logo

Matrix Spaces 📂Linear Algebra

Matrix Spaces

Definitions

For a field FF, let us define the set of m×nm \times n matrices whose components are elements of FF as Mm×n(F)M_{m \times n}(F).

Mm×n(F):={[a11a1nam1amn]:aijF} M_{m \times n}(F) := \left\{ \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} : a_{ij} \in F \right\}

Then, with respect to matrix addition and scalar multiplication, Mm×n(F)M_{m \times n}(F) is a FF-vector space.

Description

The set of matrices of the same size is itself a vector space. This might seem obvious because if you arrange numbers in a line, you get a tuple (vector), and if you arrange them in a rectangle, you get a matrix.

Subspaces

Zero Trace Matrices

A matrix whose trace is 00 is called a zero trace matrix.

The set of all n×nn \times n zero trace matrices WW is a n21n^{2}-1-dimensional subspace of Mn×nM_{n \times n}. It’s easy to see that the dimension of WW is n21n^{2}-1. For example, considering the case when 3×33 \times 3, WW is as follows:

W={[abcdefgh(a+e)]} W = \left\{ \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & -(a+e) \end{bmatrix} \right\}

Therefore, WW is generated by the following set, and its dimension is 321=83^{2}-1 = 8.

β={[100000001],[010000000],[001000000],[000100000],[000010001],[000001000],[000000100],[000000010]} \beta = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix},\right. \\[1em] \qquad \qquad \left. \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \right\}

Upper Triangular Matrices

Let’s call the set of all n×nn \times n upper triangular matrices as WW. Then, WW is a k=1nk\sum\limits_{k=1}^{n}k-dimensional subspace of Mn×nM_{n \times n}. For example, considering the case when 3×33 \times 3,

W={[abc0de00f]} W = \left\{ \begin{bmatrix} a & b & c \\ 0 & d & e \\ 0 & 0 & f \end{bmatrix} \right\}

The set generating this is as follows, and the dimension of WW is 1+2+3=61 + 2 + 3 = 6.

β={[100000000],[010000000],[001000000],[000010000],[000001000],[000000001]} \beta = \left\{ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \right. \\[1em] \qquad \qquad \left. \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right\}