logo

Ricci Curvature of Differentiable Manifolds 📂Geometry

Ricci Curvature of Differentiable Manifolds

Definition1

1

Given a differentiable manifold MM and the tangent space TpMT_{p}M at point pMp \in M, let’s have the function ff as follows. For a given X,YTpMX, Y \in T_{p}M,

f:TpMTpMZR(X,Z)Y \begin{align*} f : T_{p}M &\to T_{p}M \\ Z &\mapsto R(X,Z)Y \end{align*}

where RR is the Riemann curvature. Then, the Ricci curvature Ric:TpM×TpMR\Ric : T_{p}M \times T_{p}M \to \mathbb{R} at point pp is defined as

Ric(X,Y)=Ricp(X,Y):=trf=tr(ZR(X,Z)Y) \Ric (X,Y) = \Ric_{p} (X,Y) := \tr f = \tr \left( Z \mapsto R(X,Z)Y \right)

where tr\tr is the trace of a linear transformation.

Description

Since Ric\Ric is bilinear by definition, it’s sufficient to know its value on the basis. Let’s say {Xi=xi}\left\{ X_{i} = \dfrac{\partial }{\partial x_{i}}\right\} is the basis of TpMT_{p}M. Then, by the trace inner product representation,

Ric(Xi,Xj)=tr(ZR(Xi,Z)Xj)=g(R(Xi,Xk)Xj,Xl)gkl \Ric (X_{i}, X_{j}) = \tr (Z \mapsto R(X_{i}, Z)X_{j}) = g\left( R(X_{i}, X_{k})X_{j}, X_{l}\right)g^{kl}

The previous inner product is denoted as RikjlR_{ikjl}. Therefore,

Ric(Xi,Xj)=Rikjlgkl=Rikjsgslgkl=Rikjsδsk=Rikjk \Ric (X_{i}, X_{j}) = R_{ikjl}g^{kl} = R_{ikj}^{s}g_{sl}g^{kl} = R_{ikj}^{s}\delta_{s}^{k} = R_{ikj}^{k}

Since Rijkl=RijksgslR_{ijkl} = R_{ijk}^{s}g_{sl}, the Ricci curvature Ric(Xi,Xj)=Rikjk\Ric (X_{i}, X_{j}) = R_{ikj}^{k} implies taking an average of the second and fourth components of the Riemann curvature RijklR_{ijkl}.

Rijklglj=Rijksgslglj=Rijksδsj=Rijkj R_{ijkl}g^{lj} = R_{ijk}^{s}g_{sl}g^{lj} = R_{ijk}^{s}\delta_{s}^{j} = R_{ijk}^{j}

If {Zi}\left\{ Z_{i} \right\} are considered as the orthonormal basis of TpMT_{p}M, then since gkl=δklg^{kl} = \delta_{kl},

Ric(X,Y)=g(R(X,Zk)Y,Zl)δkl=g(R(X,Zk)Y,Zk)=R(X,Zk,Y,Zk),X,YTpM \Ric (X, Y) = g\left( R(X, Z_{k})Y, Z_{l}\right)\delta_{kl} = g\left( R(X, Z_{k})Y, Z_{k}\right) = R(X, Z_{k}, Y, Z_{k}),\quad X, Y \in T_{p}M

Moreover, Ric(X):=Ric(X,X)\Ric (X) := \Ric (X, X) is called the Ricci curvature in the direction of XX at pp.


  1. Manfredo P. Do Carmo, Riemannian Geometry (Eng Edition, 1992), p97-98 ↩︎ ↩︎