Block Matrices
📂Matrix Algebra Block Matrices Definition Let’s say A A A is a matrix m × n m \times n m × n .
A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ]
A = \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn} \\
\end{bmatrix}
A = a 11 a 21 ⋮ a m 1 a 12 a 22 ⋮ a m 2 ⋯ ⋯ ⋱ ⋯ a 1 n a 2 n ⋮ a mn
Consider any vertical and horizontal lines that cut the matrix as follows.
A = [ a 11 a 12 a 13 a 14 a 15 ⋯ a 1 n − 1 a 1 n a 21 a 22 a 23 a 24 a 25 ⋯ a 2 n − 1 a 2 n a 31 a 32 a 33 a 34 a 35 ⋯ a 3 n − 1 a 3 n a 41 a 42 a 43 a 44 a 45 ⋯ a 4 n − 1 a 4 n ⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ a m 1 a m 2 a m 3 a m 4 a m 5 ⋯ a m − 1 n a m n ]
A = \left[ \begin{array}{cc|ccc|c|}
a_{11} & a_{12} & a_{13} & a_{14} & a_{15} & \cdots & a_{1n-1} & a_{1n} \\
a_{21} & a_{22} & a_{23} & a_{24} & a_{25} & \cdots & a_{2n-1} & a_{2n} \\ \hline
a_{31} & a_{32} & a_{33} & a_{34} & a_{35} & \cdots & a_{3n-1} & a_{3n} \\
a_{41} & a_{42} & a_{43} & a_{44} & a_{45} & \cdots & a_{4n-1} & a_{4n} \\ \hline
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \\ \hline
a_{m1} & a_{m2} & a_{m3} & a_{m4} & a_{m5} & \cdots & a_{m-1n} & a_{mn}
\end{array} \right]
A = a 11 a 21 a 31 a 41 ⋮ a m 1 a 12 a 22 a 32 a 42 ⋮ a m 2 a 13 a 23 a 33 a 43 ⋮ a m 3 a 14 a 24 a 34 a 44 ⋮ a m 4 a 15 a 25 a 35 a 45 ⋮ a m 5 ⋯ ⋯ ⋯ ⋯ ⋱ ⋯ a 1 n − 1 a 2 n − 1 a 3 n − 1 a 4 n − 1 ⋮ a m − 1 n a 1 n a 2 n a 3 n a 4 n ⋮ a mn
The parts cut by each line are referred to as the blocks of A A A .
A 11 = [ a 11 a 12 a 21 a 22 ] , A 12 = [ a 13 a 14 a 15 a 23 a 24 a 25 ] , ⋯ , A k l = [ a m − 1 n a m n ]
A_{11} = \begin{bmatrix}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{bmatrix},\quad
A_{12} = \begin{bmatrix}
a_{13} & a_{14} & a_{15}\\
a_{23} & a_{24} & a_{25}
\end{bmatrix},\quad \cdots,\quad
A_{kl} = \begin{bmatrix} a_{m-1n} & a_{mn}\end{bmatrix}
A 11 = [ a 11 a 21 a 12 a 22 ] , A 12 = [ a 13 a 23 a 14 a 24 a 15 a 25 ] , ⋯ , A k l = [ a m − 1 n a mn ]
A matrix A A A represented as blocks like the following is called a block matrix .
A = [ A 11 A 12 ⋯ A 1 l A 21 A 22 ⋯ A 2 l ⋮ ⋮ ⋱ ⋮ A k 1 A k 2 ⋯ A k l ]
A = \begin{bmatrix}
A_{11} & A_{12} & \cdots & A_{1l} \\
A_{21} & A_{22} & \cdots & A_{2l} \\
\vdots & \vdots & \ddots & \vdots \\
A_{k1} & A_{k2} & \cdots & A_{kl} \\
\end{bmatrix}
A = A 11 A 21 ⋮ A k 1 A 12 A 22 ⋮ A k 2 ⋯ ⋯ ⋱ ⋯ A 1 l A 2 l ⋮ A k l
Explanation Handling matrices as block matrices simplifies matrix calculations. In fact, the calculation of block matrices can be done just like normal matrix calculations.
A = [ A 11 A 12 A 21 A 22 ] and B = [ B 11 B 12 B 21 B 22 ] ⟹ A B = [ A 11 B 11 + A 12 B 21 A 11 B 12 + A 12 B 22 A 21 B 11 + A 22 B 21 A 21 B 12 + A 22 B 22 ]
A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}\quad \text{and} \quad
B = \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix} \\[1em] \implies
AB = \begin{bmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{bmatrix}
A = [ A 11 A 21 A 12 A 22 ] and B = [ B 11 B 21 B 12 B 22 ] ⟹ A B = [ A 11 B 11 + A 12 B 21 A 21 B 11 + A 22 B 21 A 11 B 12 + A 12 B 22 A 21 B 12 + A 22 B 22 ]
Therefore, if the matrix is converted into a block matrix form including zero matrices or identity matrices , the matrix multiplication can be easily calculated.
A = [ A 11 I O A 22 ] and B = [ B 11 B 12 B 21 B 22 ] ⟹ A B = [ A 11 B 11 + B 21 A 11 B 12 + B 22 A 22 B 21 A 22 B 22 ]
A = \begin{bmatrix}
A_{11} & I \\
O & A_{22}
\end{bmatrix}\quad \text{and} \quad
B = \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix} \\[1em] \implies
AB = \begin{bmatrix}
A_{11}B_{11} + B_{21} & A_{11}B_{12} + B_{22} \\
A_{22}B_{21} & A_{22}B_{22}
\end{bmatrix}
A = [ A 11 O I A 22 ] and B = [ B 11 B 21 B 12 B 22 ] ⟹ A B = [ A 11 B 11 + B 21 A 22 B 21 A 11 B 12 + B 22 A 22 B 22 ]
A matrix split into row vectors and column vectors is also a block matrix.
A = [ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ] = [ r 1 r 2 ⋮ r m ] = [ c 1 c 2 ⋯ c n ]
\begin{align*}
A =& \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n}
\\ a_{21} & a_{22} & \cdots & a_{2n}
\\ \vdots & \vdots & \ddots & \vdots
\\ a_{m1} & a_{m2} & \cdots & a_{mn}
\end{bmatrix}
= \begin{bmatrix} \mathbf{r}_{1} \\ \mathbf{r}_{2} \\ \vdots \\ \mathbf{r}_{m} \end{bmatrix}
\\ =& \begin{bmatrix} \mathbf{c}_{1} & \mathbf{c}_{2} & \cdots & \mathbf{c}_{n} \end{bmatrix}
\end{align*}
A = = a 11 a 21 ⋮ a m 1 a 12 a 22 ⋮ a m 2 ⋯ ⋯ ⋱ ⋯ a 1 n a 2 n ⋮ a mn = r 1 r 2 ⋮ r m [ c 1 c 2 ⋯ c n ]
Therefore, A x A \mathbf{x} A x can be represented as follows.
A x = [ c 1 c 2 ⋯ c n ] [ x 1 x 2 ⋮ x n ] = ∑ i n x i c i
\begin{align*}
A \mathbf{x} &= \begin{bmatrix} \mathbf{c}_{1} & \mathbf{c}_{2} & \cdots & \mathbf{c}_{n} \end{bmatrix}
\begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} \\
&= \sum_{i}^{n} x_{i}\mathbf{c}_{i}
\end{align*}
A x = [ c 1 c 2 ⋯ c n ] x 1 x 2 ⋮ x n = i ∑ n x i c i
Furthermore, let’s say A A A is a matrix m × p m \times p m × p and a i \mathbf{a}_{i} a i is a row vector of A A A , and B B B is a matrix p × n p \times n p × n and b i \mathbf{b}_{i} b i is a column vector of B B B . Then the multiplication of the two matrices is as follows.
A B = [ a 1 a 2 ⋮ a m ] [ b 1 b 2 ⋯ b n ] = [ a 1 b 1 a 1 b 2 ⋯ a 1 b n a 2 b 1 a 2 b 2 ⋯ a 2 b n ⋮ ⋮ ⋱ ⋮ a m b 1 a m b 2 ⋯ a m b n ]
AB = \begin{bmatrix} \mathbf{a}_{1} \\ \mathbf{a}_{2} \\ \vdots \\ \mathbf{a}_{m} \end{bmatrix} \begin{bmatrix} \mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{n} \end{bmatrix}
= \begin{bmatrix}
\mathbf{a}_{1} \mathbf{b}_{1} & \mathbf{a}_{1} \mathbf{b}_{2} & \cdots & \mathbf{a}_{1} \mathbf{b}_{n} \\
\mathbf{a}_{2} \mathbf{b}_{1} & \mathbf{a}_{2} \mathbf{b}_{2} & \cdots & \mathbf{a}_{2} \mathbf{b}_{n} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{a}_{m} \mathbf{b}_{1} & \mathbf{a}_{m} \mathbf{b}_{2} & \cdots & \mathbf{a}_{m} \mathbf{b}_{n} \\
\end{bmatrix}
A B = a 1 a 2 ⋮ a m [ b 1 b 2 ⋯ b n ] = a 1 b 1 a 2 b 1 ⋮ a m b 1 a 1 b 2 a 2 b 2 ⋮ a m b 2 ⋯ ⋯ ⋱ ⋯ a 1 b n a 2 b n ⋮ a m b n
Theorem Let’s say A = [ A 1 A 2 O A 3 ] A = \begin{bmatrix} A_{1} & A_{2} \\ O & A_{3} \end{bmatrix} A = [ A 1 O A 2 A 3 ] is a block matrix. The following holds for its determinant .
det A = det A 1 det A 3
\det A = \det A_{1} \det A_{3}
det A = det A 1 det A 3
Corollary The determinant of the block matrix A = [ A 1 A 2 O I ] A = \begin{bmatrix} A_{1} & A_{2} \\ O & I \end{bmatrix} A = [ A 1 O A 2 I ] is the same as det A 1 \det A_{1} det A 1 . A matrix A A A that can be expressed in the following form by taking permutations of rows and columns is called a reducible matrix , and its determinant det A \det A det A is either det B det D \det B \det D det B det D or − det B det D -\det B \det D − det B det D .
A ~ = [ B O C D ]
\widetilde{A} = \begin{bmatrix} B & O \\ C & D \end{bmatrix}
A = [ B C O D ] Proof The block matrix A A A can be decomposed into the product of three block matrices as follows.
A = [ A 1 A 2 O A 3 ] = [ I A 1 + O O I A 2 + O I O A 1 + A 3 O O A 2 + A 3 I ] = [ I O O A 3 ] [ A 1 A 2 O I ] = [ I O O A 3 ] [ I A 1 + A 2 O I O + A 2 I O A 1 + I O O O + I I ] = [ I O O A 3 ] [ I A 2 O I ] [ A 1 O O I ]
\begin{align*}
A
&= \begin{bmatrix} A_{1} & A_{2} \\ O & A_{3} \end{bmatrix} \\
&= \begin{bmatrix} IA_{1} + OO & IA_{2} + OI \\ OA_{1} + A_{3}O & OA_{2} + A_{3}I \end{bmatrix} \\
&= \begin{bmatrix} I & O \\ O & A_{3} \end{bmatrix} \begin{bmatrix} A_{1} & A_{2} \\ O & I \end{bmatrix} \\
&= \begin{bmatrix} I & O \\ O & A_{3} \end{bmatrix} \begin{bmatrix} IA_{1} + A_{2}O & IO + A_{2}I \\ OA_{1} + IO & OO + II \end{bmatrix} \\
&= \begin{bmatrix} I & O \\ O & A_{3} \end{bmatrix} \begin{bmatrix} I & A_{2} \\ O & I \end{bmatrix} \begin{bmatrix} A_{1} & O \\ O & I \end{bmatrix}
\end{align*}
A = [ A 1 O A 2 A 3 ] = [ I A 1 + OO O A 1 + A 3 O I A 2 + O I O A 2 + A 3 I ] = [ I O O A 3 ] [ A 1 O A 2 I ] = [ I O O A 3 ] [ I A 1 + A 2 O O A 1 + I O I O + A 2 I OO + II ] = [ I O O A 3 ] [ I O A 2 I ] [ A 1 O O I ]
Since the determinant of the product is the same as the product of determinants
det A = det ( [ I O O A 3 ] [ I A 2 O I ] [ A 1 O O I ] ) = det ( [ I O O A 3 ] ) det ( [ I A 2 O I ] ) det ( [ A 1 O O I ] )
\begin{align*}
\det A
&= \det \left( \begin{bmatrix} I & O \\ O & A_{3} \end{bmatrix} \begin{bmatrix} I & A_{2} \\ O & I \end{bmatrix} \begin{bmatrix} A_{1} & O \\ O & I \end{bmatrix} \right) \\
&= \det \left( \begin{bmatrix} I & O \\ O & A_{3} \end{bmatrix} \right) \det \left( \begin{bmatrix} I & A_{2} \\ O & I \end{bmatrix} \right) \det \left( \begin{bmatrix} A_{1} & O \\ O & I \end{bmatrix} \right)
\end{align*}
det A = det ( [ I O O A 3 ] [ I O A 2 I ] [ A 1 O O I ] ) = det ( [ I O O A 3 ] ) det ( [ I O A 2 I ] ) det ( [ A 1 O O I ] )
Considering the Laplace expansion of the determinant,
det ( [ I O O A 3 ] ) = det A 3 , det ( [ A 1 O O I ] ) = det A 1 ,
\det \left( \begin{bmatrix} I & O \\ O & A_{3} \end{bmatrix} \right) = \det A_{3},\quad \det \left( \begin{bmatrix} A_{1} & O \\ O & I \end{bmatrix} \right) = \det A_{1},
det ( [ I O O A 3 ] ) = det A 3 , det ( [ A 1 O O I ] ) = det A 1 ,
and det ( [ I A 2 O I ] ) = 1
\text{and} \quad \det \left( \begin{bmatrix} I & A_{2} \\ O & I \end{bmatrix} \right)=1
and det ( [ I O A 2 I ] ) = 1
we can see that
det A = det A 1 det A 3
\det A = \det A_{1} \det A_{3}
det A = det A 1 det A 3
■