logo

Coordinate Representation of the Riemann Curvature Tensor 📂Geometry

Coordinate Representation of the Riemann Curvature Tensor

Explanation1

Given a Riemannian manifold (M,g)(M, g), let’s say the coordinate system at pp is referred to as (U,x)(U, \mathbf{x}). And let the tangent vector be denoted as follows.

xi=denoteXi \dfrac{\partial }{\partial x_{i}} \overset{\text{denote}}{=} X_{i}

Now, consider R(Xi,Xj)XkR(X_{i}, X_{j})X_{k}. By the definition of the Riemann curvature tensor RR, it is also a vector field. Therefore, it can be expressed as follows.

R(Xi,Xj)Xk=lRijklXl R(X_{i}, X_{j})X_{k} = \sum_{l}R_{ijk}^{l}X_{l}

The coefficient of the above vector is determined by Xi,Xj,XkX_{i}, X_{j}, X_{k}, so it is denoted as RijklR_{ijk}^{l}. Now let’s say the vector field X,Y,ZX, Y, Z is as follows.

X=uiXi,Y=vjXj,Z=wkXk X = \sum u^{i}X_{i},\quad Y = \sum v^{j}X_{j},\quad Z = \sum w^{k}X_{k}

Then, by the linearity of RR, we get the following.

R(X,Y)Z=i,j,k,lRijkluivjwkXl R(X, Y)Z = \sum_{i, j, k, l}R_{ijk}^{l}u^{i}v^{j}w^{k}X_{l}

Looking back at R(Xi,Xj)XkR(X_{i}, X_{j})X_{k} to express RijklR_{ijk}^{l} in terms of the Christoffel symbols Γijk\Gamma_{ij}^{k}, since [Xi,Xj]=0[X_{i}, X_{j}] = 0, and by definition since XiXj=ΓijkXk\nabla_{X_{i}}X_{j} = \Gamma_{ij}^{k}X_{k},

R(Xi,Xj)Xk=XjXiXkXiXjXk=Xj(lΓiklXl)Xi(lΓjklXl)=lΓiklXjXl+lΓiklxjXllΓjklXiXllΓjklxiXl=lΓiklsΓjlsXslΓjklsΓilsXs+lΓiklxjXllΓjklxiXl=sl(ΓiklΓjlsΓjklΓils)Xs+lΓiklxjXllΓjklxiXl=sl(ΓiklΓjlsΓjklΓils)Xs+sΓiksxjXssΓjksxiXs=s(lΓiklΓjlslΓjklΓils+ΓiksxjΓjksxi)Xs=sRijksXs \begin{align*} R(X_{i}, X_{j})X_{k} &= \nabla_{X_{j}}\nabla_{X_{i}}X_{k} - \nabla_{X_{i}}\nabla_{X_{j}}X_{k} \\ &= \nabla_{X_{j}}\left( \sum_{l}\Gamma_{ik}^{l}X_{l} \right) - \nabla_{X_{i}}\left( \sum_{l}\Gamma_{jk}^{l}X_{l} \right) \\ &= \sum_{l}\Gamma_{ik}^{l} \nabla_{X_{j}} X_{l} + \sum_{l}\dfrac{\partial \Gamma_{ik}^{l}}{\partial x_{j}}X_{l} - \sum_{l}\Gamma_{jk}^{l}\nabla_{X_{i}}X_{l} - \sum_{l}\dfrac{\partial \Gamma_{jk}^{l}}{\partial x_{i}}X_{l}\\ &= \sum_{l}\Gamma_{ik}^{l} \sum_{s}\Gamma_{jl}^{s}X_{s} - \sum_{l}\Gamma_{jk}^{l} \sum_{s} \Gamma_{il}^{s}X_{s} + \sum_{l}\dfrac{\partial \Gamma_{ik}^{l}}{\partial x_{j}}X_{l} - \sum_{l}\dfrac{\partial \Gamma_{jk}^{l}}{\partial x_{i}}X_{l} \\ &= \sum_{s} \sum_{l} \left( \Gamma_{ik}^{l}\Gamma_{jl}^{s} - \Gamma_{jk}^{l} \Gamma_{il}^{s} \right)X_{s} + \sum_{l}\dfrac{\partial \Gamma_{ik}^{l}}{\partial x_{j}}X_{l} - \sum_{l}\dfrac{\partial \Gamma_{jk}^{l}}{\partial x_{i}}X_{l} \\ &= \sum_{s} \sum_{l} \left( \Gamma_{ik}^{l}\Gamma_{jl}^{s} - \Gamma_{jk}^{l} \Gamma_{il}^{s} \right)X_{s} + \sum_{s}\dfrac{\partial \Gamma_{ik}^{s}}{\partial x_{j}}X_{s} - \sum_{s}\dfrac{\partial \Gamma_{jk}^{s}}{\partial x_{i}}X_{s} \\ &= \sum_{s} \left( \sum_{l}\Gamma_{ik}^{l}\Gamma_{jl}^{s} - \sum_{l}\Gamma_{jk}^{l} \Gamma_{il}^{s} + \dfrac{\partial \Gamma_{ik}^{s}}{\partial x_{j}} - \dfrac{\partial \Gamma_{jk}^{s}}{\partial x_{i}} \right)X_{s} \\ &= \sum_{s} R_{ijk}^{s}X_{s} \\ \end{align*}

Therefore,

Rijks=lΓiklΓjlslΓjklΓils+ΓiksxjΓjksxi R_{ijk}^{s} = \sum_{l}\Gamma_{ik}^{l}\Gamma_{jl}^{s} - \sum_{l}\Gamma_{jk}^{l} \Gamma_{il}^{s} + \dfrac{\partial \Gamma_{ik}^{s}}{\partial x_{j}} - \dfrac{\partial \Gamma_{jk}^{s}}{\partial x_{i}}

In differential geometry at R3\mathbb{R}^{3}, conversely, the above equation is defined as the coefficients of the Riemann curvature tensor. Hence, R(Xi,Xj,Xk,Xl)R(X_{i}, X_{j}, X_{k}, X_{l}) is as follows.

R(Xi,Xj,Xk,Xl)=g(R(Xi,Xj)Xk,Xl)=R(Xi,Xj)Xk,Xl=sg(RijksXs,Xl)=sRijksg(Xs,Xl)=sRijksgsl=denoteRijkl \begin{align*} R(X_{i}, X_{j}, X_{k}, X_{l}) &= g( R(X_{i}, X_{j})X_{k}, X_{l} ) = \left\langle R(X_{i}, X_{j})X_{k}, X_{l} \right\rangle \\ &= \sum_{s}g(R_{ijk}^{s}X_{s}, X_{l}) \\ &= \sum_{s}R_{ijk}^{s}g(X_{s}, X_{l}) \\ &= \sum_{s}R_{ijk}^{s}g_{sl} \\ &\overset{\text{denote}}{=} R_{ijkl} \end{align*}

Looking at the above equation, whether it is RijksR_{ijk}^{s} or RijklR_{ijkl}, the only difference is multiplying by the metric gksg_{ks}. For this reason, the notation R(X,Y)ZR(X, Y)Z and R(X,Y,Z,W)R(X,Y,Z,W) is redundantly used, and essentially considered the same.

Symmetry

By the Bianchi identity, the following holds.

Rijks+Rjkis+Rkijs=0,s R_{ijk}^{s} + R_{jki}^{s} + R_{kij}^{s} = 0,\quad \forall s

By the symmetry of Riemann curvature, the following holds.

Rijkl+Rjkil+Rkijl=0Rijkl=RjiklRijkl=RijlkRijkl=Rklij \begin{align*} R_{ijkl} + R_{jkil} + R_{kijl} &= 0 \\ R_{ijkl} &= -R_{jikl} \\ R_{ijkl} &= -R_{ijlk} \\ R_{ijkl} &= R_{klij} \end{align*}


  1. Manfredo P. Do Carmo, Riemannian Geometry (Eng Edition, 1992), p92-93 ↩︎