logo

Symmetry of the Riemann Curvature Tensor 📂Geometry

Symmetry of the Riemann Curvature Tensor

Definition1

The Riemann curvature tensor RR is defined as follows for R:X(M)×X(M)×X(M)×X(M)D(M)R: \frak{X}(M) \times \frak{X}(M) \times \frak{X}(M) \times \frak{X}(M) \to \mathcal{D}(M).

R(X,Y,Z,W):=g(R(X,Y)Z,W)=R(X,Y)Z,W R(X, Y, Z, W) := g(R(X, Y)Z, W) = \left\langle R(X, Y)Z, W \right\rangle

Here, X(M)\frak{X}(M) is the set of all vector fields defined on MM, D(M)\mathcal{D}(M) is the set of differentiable functions defined on MM, and gg is the Riemannian metric.

Description

Note that notation is being used redundantly. This is because these two definitions are essentially the same.

RR(Eq. 1) has the following symmetries, which stem from the symmetry and compatibility of the Levi-Civita connection.

Properties

R(X,Y,Z,W)+R(Y,Z,X,W)+R(Z,X,Y,W)=0R(X,Y,Z,W)=R(Y,X,Z,W)R(X,Y,Z,W)=R(X,Y,W,Z)R(X,Y,Z,W)=R(Z,W,X,Y) \begin{align} R(X, Y, Z, W) + R(Y, Z, X, W) + R(Z, X, Y, W) &= 0 \\ R(X, Y, Z, W) &= - R(Y, X, Z, W) \\ R(X, Y, Z, W) &= - R(X, Y, W, Z) \\ R(X, Y, Z, W) &= R(Z, W, X, Y) \end{align}

Proof

(1)(1)

It holds by the Bianchi identity.

R(X,Y,Z,W)+R(Y,Z,X,W)+R(Z,X,Y,W)=g(R(X,Y)Z,W)+g(R(Y,Z)X,W)+g(R(Z,X)Y,W)=g(R(X,Y)Z,W)+g(R(Y,Z)X,W)+g(R(Z,X)Y,W)=g(0,W)=0 \begin{align*} & R(X, Y, Z, W) + R(Y, Z, X, W) + R(Z, X, Y, W) \\ =& g(R(X, Y)Z, W) + g(R(Y, Z)X, W) + g(R(Z, X)Y, W) \\ =& g\left( R(X, Y)Z, W) + g(R(Y, Z)X, W) + g(R(Z, X)Y, W \right) \\ =& g(0, W) \\ =& 0 \end{align*}

(2)(2)

It holds by the definition of the curvature tensor RR.

R(X,Y,Z,W)=g(R(X,Y)Z,W))=g(YXZXYZ+[X,Y]Z,W)=g(XYZYXZ+[Y,X]Z,W)=g(R(Y,X)Z,W)=R(Y,X,Z,W) \begin{align*} R(X, Y, Z, W) &= g\left( R(X, Y)Z, W \right)) \\ &= g\left( \nabla_{Y}\nabla_{X}Z - \nabla_{X}\nabla_{Y}Z + \nabla_{[X, Y]}Z, W \right) \\ &= - g\left( \nabla_{X}\nabla_{Y}Z - \nabla_{Y}\nabla_{X}Z + \nabla_{[Y, X]}Z, W \right) \\ &= - g\left( R(Y, X)Z, W \right) \\ &= - R(Y, X, Z, W) \end{align*}

(3)(3)

It is not straightforward as in (2)(2). First, let’s show the following claim.

Claim: R(X,Y,Z,Z)=0R(X, Y, Z, Z) = 0

R(X,Y,Z,Z)=g(YXZXYZ+[X,Y]Z,Z)=g(YXZ,Z)g(XYZ,Z)+g([X,Y]Z,Z) \begin{align*} R(X, Y, Z, Z) &= g\left( \nabla_{Y}\nabla_{X}Z - \nabla_{X}\nabla_{Y}Z + \nabla_{[X, Y]}Z, Z \right) \\ &= g\left( \nabla_{Y}\nabla_{X}Z, Z \right) - g\left( \nabla_{X}\nabla_{Y}Z, Z \right) + g\left( \nabla_{[X, Y]}Z, Z \right) \end{align*}

Since the Levi-Civita connection is compatible, the following holds.

Yg(XZ,Z)=g(YXZ,Z)+g(XZ,YZ)    g(YXZ,Z)=Yg(XZ,Z)g(XZ,YZ) \begin{align*} && Y g(\nabla_{X}Z, Z) &= g(\nabla_{Y}\nabla_{X}Z, Z) + g(\nabla_{X}Z, \nabla_{Y}Z) \\ \implies && g(\nabla_{Y}\nabla_{X}Z, Z) &= Y g(\nabla_{X}Z, Z) - g(\nabla_{X}Z, \nabla_{Y}Z) \end{align*}

Similarly, the following also holds.

Xg(YZ,Z)=g(XYZ,Z)+g(YZ,XZ)    g(XYZ,Z)=Xg(YZ,Z)g(YZ,XZ) \begin{align*} && X g(\nabla_{Y}Z, Z) &= g(\nabla_{X}\nabla_{Y}Z, Z) + g(\nabla_{Y}Z, \nabla_{X}Z) \\ \implies && g(\nabla_{X}\nabla_{Y}Z, Z) &= X g(\nabla_{Y}Z, Z) - g(\nabla_{Y}Z, \nabla_{X}Z) \end{align*}

[X,Y]g(Z,Z)=g([X,Y]Z,Z)+g(Z,[X,Y]Z)    g([X,Y]Z,Z)=12[X,Y]g(Z,Z) \begin{align*} && [X, Y] g(Z, Z) &= g(\nabla_{[X, Y]}Z, Z) + g(Z, \nabla_{[X, Y]}Z) \\ \implies && g(\nabla_{[X, Y]}Z, Z) &= \dfrac{1}{2} [X, Y] g(Z, Z) \end{align*}

Applying these, we obtain the following.

R(X,Y,Z,Z)=Yg(XZ,Z)g(XZ,YZ)Xg(YZ,Z)+g(YZ,XZ)+12[X,Y]g(Z,Z)=Yg(XZ,Z)Xg(YZ,Z)+12[X,Y]g(Z,Z) \begin{align*} &R(X, Y, Z, Z) \\ =& Y g(\nabla_{X}Z, Z) - g(\nabla_{X}Z, \nabla_{Y}Z) - X g(\nabla_{Y}Z, Z) + g(\nabla_{Y}Z, \nabla_{X}Z) + \dfrac{1}{2} [X, Y] g(Z, Z) \\ =& Y g(\nabla_{X}Z, Z) - X g(\nabla_{Y}Z, Z) + \dfrac{1}{2} [X, Y] g(Z, Z) \end{align*}

Similarly, as \nabla is compatible, the following holds.

YXg(Z,Z)=Yg(XZ,Z)+Yg(Z,XZ)    Yg(Z,XZ)=12YXg(Z,Z) YXg(Z, Z) = Yg(\nabla_{X}Z, Z) + Yg(Z, \nabla_{X}Z) \implies Yg(Z, \nabla_{X}Z) = \dfrac{1}{2}YXg(Z, Z)

Therefore, we get the following.

R(X,Y,Z,Z)=12YXg(Z,Z)12XYg(Z,Z)+12[X,Y]g(Z,Z)=12(YXXY)g(Z,Z)+12[X,Y]g(Z,Z)=12[Y,X]g(Z,Z)+12[X,Y]g(Z,Z)=12[X,Y]g(Z,Z)+12[X,Y]g(Z,Z)=0 \begin{align*} R(X, Y, Z, Z) &= \dfrac{1}{2}YXg(Z, Z) - \dfrac{1}{2}XYg(Z, Z) + \dfrac{1}{2} [X, Y] g(Z, Z) \\ &= \dfrac{1}{2}(YX- XY)g(Z, Z) + \dfrac{1}{2} [X, Y] g(Z, Z) \\ &= \dfrac{1}{2}[Y, X]g(Z, Z) + \dfrac{1}{2} [X, Y] g(Z, Z) \\ &= - \dfrac{1}{2}[X, Y]g(Z, Z) + \dfrac{1}{2} [X, Y] g(Z, Z) \\ &= 0 \end{align*}

Then, by the necessary and sufficient condition for an alternating function,

R(X,Y,Z,W)=R(X,Y,W,Z) R(X, Y, Z, W) = -R(X, Y, W, Z)

(4)(4)

First, the following holds by the Bianchi identity.

R(X,Y,Z,W)+R(Y,Z,X,W)+R(Z,X,Y,W)=0 R(X, Y, Z, W) + R(Y, Z, X, W) + R(Z, X, Y, W) = 0

Cyclically changing these four variables, we similarly obtain the following three equations by the Bianchi identity.

R(Y,Z,W,X)+R(Z,W,Y,X)+R(Z,X,Y,X)=0R(Z,W,X,Y)+R(W,X,Z,Y)+R(X,Z,W,Y)=0R(W,X,Y,Z)+R(X,Y,W,Z)+R(Y,W,X,Z)=0 \begin{align*} R(Y, Z, W, X) + R(Z, W, Y, X) + R(Z, X, Y, X) &= 0 \\ R(Z, W, X, Y) + R(W, X, Z, Y) + R(X, Z, W, Y) &= 0 \\ R(W, X, Y, Z) + R(X, Y, W, Z) + R(Y, W, X, Z) &= 0 \end{align*}

Adding all four equations, following the proven symmetry leads to the elimination as follows.

0=R(X,Y,Z,W)+R(Y,Z,X,W)+R(Z,X,Y,W)+R(Y,Z,W,X)+R(Z,W,Y,X)+R(W,Y,Z,X)+R(Z,W,X,Y)+R(W,X,Z,Y)+R(X,Z,W,Y)+R(W,X,Y,Z)+R(X,Y,W,Z)+R(Y,W,X,Z)=R(Z,X,Y,W)+R(W,Y,X,X)+R(X,Z,W,Y)+R(Y,W,X,Z)=(1)(1)R(X,Z,W,Y)+(1)(1)R(Y,W,X,Z)+R(X,Z,W,Y)+R(Y,W,X,Z) \begin{align*} &0 \\ =& {\color{red}\cancel{\color{black}R(X, Y, Z, W)}} + {\color{green}\cancel{\color{black}R(Y, Z, X, W)}} + R(Z, X, Y, W) \\ & + {\color{green}\cancel{\color{black}R(Y, Z, W, X)}} + {\color{orange}\cancel{\color{black}R(Z, W, Y, X)}} + R(W, Y, Z, X) \\ & + {\color{orange}\cancel{\color{black}R(Z, W, X, Y)}} + {\color{purple}\cancel{\color{black}R(W, X, Z, Y)}} + R(X, Z, W, Y) \\ & + {\color{purple}\cancel{\color{black}R(W, X, Y, Z)}} + {\color{red}\cancel{\color{black}R(X, Y, W, Z)}} + R(Y, W, X, Z) \\ =& R(Z, X, Y, W) + R(W, Y, X, X) + R(X, Z, W, Y) + R(Y, W, X, Z) \\ =& (-1)(-1)R(X, Z, W, Y) + (-1)(-1)R(Y, W, X, Z) + R(X, Z, W, Y) + R(Y, W, X, Z) \\ \end{align*}

Therefore, we obtain the following.

2R(Y,W,X,Z)+2R(X,Z,W,Y)=0    R(Y,W,X,Z)=R(X,Z,W,Y)=R(X,Z,Y,W) \begin{align*} && 2R(Y, W, X, Z) + 2R(X, Z, W, Y) &= 0 \\ \implies && R(Y, W, X, Z) &= -R(X, Z, W, Y) \\ && &= R(X, Z, Y, W) \\ \end{align*}


  1. Manfredo P. Do Carmo, Riemannian Geometry (Eng Edition, 1992), p91-92 ↩︎