Differential Geometry of Curved Manifolds
📂Geometry Differential Geometry of Curved Manifolds Definition Let’s denote M M M as a Riemannian manifold , and X ( M ) \frak{X}(M) X ( M ) as the set of all vector fields on M M M .
X ( M ) = the set of all vector fileds of calss C ∞ on M
\frak{X}(M) = \text{the set of all vector fileds of calss } C^{\infty} \text{ on } M
X ( M ) = the set of all vector fileds of calss C ∞ on M
The curvature R R R of M M M is a function that maps X , Y ∈ X ( M ) X, Y \in \frak{X}(M) X , Y ∈ X ( M ) to R ( X , Y ) : X ( M ) → X ( M ) R(X, Y) : \frak{X}(M) \to \frak{X}(M) R ( X , Y ) : X ( M ) → X ( M ) . In this context, R ( X , Y ) R(X, Y) R ( X , Y ) is given as follows.
R ( X , Y ) Z = ∇ Y ∇ X Z − ∇ X ∇ Y Z + ∇ [ X , Y ] Z , Z ∈ X ( M )
\begin{equation}
R(X, Y) Z = \nabla_{Y} \nabla_{X} Z - \nabla_{X} \nabla_{Y} Z + \nabla_{[X,Y]}Z, \quad Z \in \frak{X}(M)
\end{equation}
R ( X , Y ) Z = ∇ Y ∇ X Z − ∇ X ∇ Y Z + ∇ [ X , Y ] Z , Z ∈ X ( M )
Such R R R is called the Riemannian curvature or Riemannian curvature tensor .
∇ \nabla ∇ is the Levi-Civita connection on M M M , [ ⋅ , ⋅ ] [ \cdot, \cdot] [ ⋅ , ⋅ ] is the Lie bracket .
Explanation In other words, R R R maps two vector fields X , Y X, Y X , Y to the function R ( X , Y ) R(X, Y) R ( X , Y ) , and then R ( X , Y ) R(X, Y) R ( X , Y ) again maps vector field Z Z Z as described by ( 1 ) (1) ( 1 ) . Therefore, it’s indeed appropriate to write it as follows.
R : X ( M ) × X ( M ) × X ( M ) → X ( M ) R ( X , Y , Z ) = ∇ Y ∇ X Z − ∇ X ∇ Y Z + ∇ [ X , Y ] Z , Z ∈ X ( M )
R : \frak{X}(M) \times \frak{X}(M) \times \frak{X}(M) \to \frak{X}(M) \\[1em]
R(X,Y,Z) = \nabla_{Y} \nabla_{X} Z - \nabla_{X} \nabla_{Y} Z + \nabla_{[X,Y]}Z, \quad Z \in \frak{X}(M)
R : X ( M ) × X ( M ) × X ( M ) → X ( M ) R ( X , Y , Z ) = ∇ Y ∇ X Z − ∇ X ∇ Y Z + ∇ [ X , Y ] Z , Z ∈ X ( M )
However, as one can see from the value of R ( X , Y , Z ) R(X,Y,Z) R ( X , Y , Z ) , it neatly bundles into Z Z Z . Moreover, since X , Y X, Y X , Y is used as the differentiating variable and Z Z Z as the variable being differentiated, this notation conventionally distinguishes their roles as displayed in R ( X , Y ) Z R(X, Y) Z R ( X , Y ) Z .
Also, there is a difference in the sign conventions between textbooks for definition ( 1 ) (1) ( 1 ) , but essentially they are the same.
Repeated Notation For the Riemann curvature tensor R R R , R : X ( M ) × X ( M ) × X ( M ) × X ( M ) → D ( M ) R: \frak{X}(M) \times \frak{X}(M) \times \frak{X}(M) \times \frak{X}(M) \to \mathcal{D}(M) R : X ( M ) × X ( M ) × X ( M ) × X ( M ) → D ( M ) is defined as follows.
R ( X , Y , Z , W ) : = g ( R ( X , Y ) Z , W ) = ⟨ R ( X , Y ) Z , W ⟩
R(X, Y, Z, W) := g(R(X, Y)Z, W) = \left\langle R(X, Y)Z, W \right\rangle
R ( X , Y , Z , W ) := g ( R ( X , Y ) Z , W ) = ⟨ R ( X , Y ) Z , W ⟩
This is called the Riemann curvature tensor. The Riemann curvature tensor introduced in the definition is R R R , and this one is also R R R . The reason for this duplication is because they are essentially the same, with only a difference of multiplying a metric .
Coordinate Representation Let’s denote the basis of T p M T_{p}M T p M as { X i } \left\{ X_{i} \right\} { X i } . R ( X i , X j ) X k R(X_{i},X_{j})X_{k} R ( X i , X j ) X k is notated as follows.
R ( X i , X j ) X k = ∑ s R i j k s X s
R(X_{i},X_{j})X_{k} = \sum_{s}R_{ijk}^{s}X_{s}
R ( X i , X j ) X k = s ∑ R ijk s X s
R ( X i , X j , X k , X l ) R(X_{i}, X_{j}, X_{k}, X_{l}) R ( X i , X j , X k , X l ) is notated as follows.
R i j k l = R ( X i , X j , X k , X l ) = g ( R ( X i , X j ) X k , X l ) = ∑ s R i j k s g s l
R_{ijkl} = R(X_{i}, X_{j}, X_{k}, X_{l}) = g\left( R(X_{i}, X_{j})X_{k}, X_{l} \right) = \sum_{s}R_{ijk}^{s}g_{sl}
R ijk l = R ( X i , X j , X k , X l ) = g ( R ( X i , X j ) X k , X l ) = s ∑ R ijk s g s l
Example: Euclidean Space Let’s denote as M = R n M = \mathbb{R}^{n} M = R n . The Euclidean space is a flat space without curvature. Therefore, we expect to obtain R ( X , Y ) Z = 0 R(X,Y)Z = 0 R ( X , Y ) Z = 0 . Conversely, if this result is not obtained, we can say that definition ( 1 ) (1) ( 1 ) does not hold any meaningful value. Let X , Z X, Z X , Z be set as follows.
X = ( X 1 , … , X n ) = ∑ X i ∂ ∂ x i and Z = ( Z 1 , … , Z n ) = ∑ Z k ∂ ∂ x k
X = (X^{1}, \dots, X^{n}) = \sum X^{i}\dfrac{\partial }{\partial x_{i}} \text{ and } Z = (Z^{1}, \dots, Z^{n}) = \sum Z^{k}\dfrac{\partial }{\partial x_{k}}
X = ( X 1 , … , X n ) = ∑ X i ∂ x i ∂ and Z = ( Z 1 , … , Z n ) = ∑ Z k ∂ x k ∂
∇ X Z \nabla_{X}Z ∇ X Z is as follows.
∇ X Z = ∑ i , k ( X i ∂ Z k ∂ x i + ∑ j X i Z j Γ i j k ) ∂ ∂ x k
\nabla_{X}Z = \sum_{i,k} \left( X^{i}\dfrac{\partial Z^{k}}{\partial x_{i}} + \sum_{j}X^{i}Z^{j}\Gamma_{ij}^{k} \right) \dfrac{\partial }{\partial x_{k}}
∇ X Z = i , k ∑ ( X i ∂ x i ∂ Z k + j ∑ X i Z j Γ ij k ) ∂ x k ∂
In the case of Euclidean space, since Γ i j k = 0 \Gamma_{ij}^{k} = 0 Γ ij k = 0 , we obtain the following.
∇ X Z = ∑ i , k X i ( ∂ Z k ∂ x i ) ∂ ∂ x k = ∑ k ( ∑ i X i ∂ Z k ∂ x i ) ∂ ∂ x k = ∑ k X Z k ∂ ∂ x k = ( X Z 1 , … , X Z n )
\begin{align*}
\nabla_{X} Z &= \sum_{i,k} X^{i} \left( \dfrac{\partial Z^{k}}{\partial x_{i}} \right) \dfrac{\partial }{\partial x_{k}} \\
&= \sum_{k} \left( \sum_{i} X^{i} \dfrac{\partial Z^{k}}{\partial x_{i}} \right) \dfrac{\partial }{\partial x_{k}} \\
&= \sum_{k} X Z^{k} \dfrac{\partial }{\partial x_{k}} \\
&= \left( XZ^{1}, \dots, XZ^{n} \right)
\end{align*}
∇ X Z = i , k ∑ X i ( ∂ x i ∂ Z k ) ∂ x k ∂ = k ∑ ( i ∑ X i ∂ x i ∂ Z k ) ∂ x k ∂ = k ∑ X Z k ∂ x k ∂ = ( X Z 1 , … , X Z n )
Similarly, we obtain the following.
∇ Y ∇ X Z = ( Y X Z 1 , … , Y X Z n )
\nabla_{Y} \nabla_{X} Z = \left( YXZ^{1}, \dots, YXZ^{n} \right)
∇ Y ∇ X Z = ( Y X Z 1 , … , Y X Z n )
Therefore,
R ( X , Y ) Z = ∇ Y ∇ X Z − ∇ X ∇ Y Z + ∇ [ X , Y ] Z = ( Y X Z 1 , … , Y X Z n ) − ( X Y Z 1 , … , X Y Z n ) + ( ( X Y − Y X ) Z 1 , … , ( X Y − Y X ) Z n ) = 0
\begin{align*}
R(X, Y) Z &= \nabla_{Y} \nabla_{X} Z - \nabla_{X} \nabla_{Y} Z + \nabla_{[X,Y]}Z \\
&= \left( YXZ^{1}, \dots, YXZ^{n} \right) - \left( XYZ^{1}, \dots, XYZ^{n} \right) \\
&\quad + \left( (XY-YX)Z^{1}, \dots, (XY-YX)Z^{n} \right) \\
&= 0
\end{align*}
R ( X , Y ) Z = ∇ Y ∇ X Z − ∇ X ∇ Y Z + ∇ [ X , Y ] Z = ( Y X Z 1 , … , Y X Z n ) − ( X Y Z 1 , … , X Y Z n ) + ( ( X Y − Y X ) Z 1 , … , ( X Y − Y X ) Z n ) = 0
■
Properties (a) R R R is bilinear . That is,
R ( f X 1 + g X 2 , Y 1 ) = f R ( X 1 , Y 1 ) + g R ( X 2 , Y 1 ) R ( X 1 , f Y 1 + g Y 2 ) = f R ( X 1 , Y 1 ) + g R ( X 1 , Y 2 )
\begin{align*}
R(f X_{1} + gX_{2}, Y_{1}) &= fR(X_{1}, Y_{1}) + gR(X_{2}, Y_{1}) \\[1em]
R(X_{1}, fY_{1} + gY_{2}) &= fR(X_{1}, Y_{1}) + gR(X_{1}, Y_{2})
\end{align*}
R ( f X 1 + g X 2 , Y 1 ) R ( X 1 , f Y 1 + g Y 2 ) = f R ( X 1 , Y 1 ) + g R ( X 2 , Y 1 ) = f R ( X 1 , Y 1 ) + g R ( X 1 , Y 2 )
where f , g ∈ D ( M ) f, g \in \mathcal{D}(M) f , g ∈ D ( M ) , X 1 , X 2 , Y 1 , Y 2 ∈ X ( M ) \quad X_{1}, X_{2}, Y_{1}, Y_{2} \in \frak{X}(M) X 1 , X 2 , Y 1 , Y 2 ∈ X ( M ) are given.
(b) For any X , Y ∈ X ( M ) X, Y \in \frak{X}(M) X , Y ∈ X ( M ) , R ( X , Y ) R(X, Y) R ( X , Y ) is linear. That is,
R ( X , Y ) ( Z + W ) = R ( X , Y ) Z + R ( X , Y ) W R ( X , Y ) f Z = f R ( X , Y ) Z
\begin{align*}
R(X, Y) (Z + W) &= R(X, Y) Z + R(X, Y) W \\[1em]
R(X, Y) fZ &= f R(X, Y) Z
\end{align*}
R ( X , Y ) ( Z + W ) R ( X , Y ) f Z = R ( X , Y ) Z + R ( X , Y ) W = f R ( X , Y ) Z
where f ∈ D ( M ) f \in \mathcal{D}(M) f ∈ D ( M ) , Z , W ∈ X ( M ) \quad Z, W \in \frak{X}(M) Z , W ∈ X ( M ) are given.
Proof (b) The first property is trivial by the definition of connection. Thus, only the second line is proven.
R ( X , Y ) f Z = ∇ Y ∇ X f Z − ∇ X ∇ Y f Z + ∇ [ X , Y ] f Z
R(X, Y) fZ = \nabla_{Y} \nabla_{X} fZ - \nabla_{X} \nabla_{Y} fZ + \nabla_{[X,Y]}fZ
R ( X , Y ) f Z = ∇ Y ∇ X f Z − ∇ X ∇ Y f Z + ∇ [ X , Y ] f Z
Firstly, calculating the first term by the definition of the connection,
∇ Y ∇ X ( f Z ) = ∇ Y ( f ∇ X Z + ( X f ) Z ) = ∇ Y ( f ∇ X Z ) + ∇ Y ( ( X f ) Z ) = f ∇ Y ∇ X Z + ( Y f ) ∇ X Z + ( X f ) ∇ Y ( Z ) + ( Y ( X f ) ) Z
\begin{align*}
\nabla_{Y} \nabla_{X} (fZ)
&= \nabla_{Y}(f\nabla_{X} Z + (Xf)Z) \\
&= \nabla_{Y}(f\nabla_{X}Z) + \nabla_{Y}((Xf)Z) \\
&= f\nabla_{Y}\nabla_{X}Z + (Yf)\nabla_{X}Z + (Xf)\nabla_{Y}(Z) + (Y(Xf))Z
\end{align*}
∇ Y ∇ X ( f Z ) = ∇ Y ( f ∇ X Z + ( X f ) Z ) = ∇ Y ( f ∇ X Z ) + ∇ Y (( X f ) Z ) = f ∇ Y ∇ X Z + ( Y f ) ∇ X Z + ( X f ) ∇ Y ( Z ) + ( Y ( X f )) Z
Similarly calculating,
∇ X ∇ Y ( f Z ) = f ∇ X ∇ Y Z + ( X f ) ∇ Y Z + ( Y f ) ∇ X ( Z ) + ( X ( Y f ) ) Z
\nabla_{X}\nabla_{Y}(fZ) = f\nabla_{X}\nabla_{Y}Z + (Xf)\nabla_{Y}Z + (Yf)\nabla_{X}(Z) + (X(Yf))Z
∇ X ∇ Y ( f Z ) = f ∇ X ∇ Y Z + ( X f ) ∇ Y Z + ( Y f ) ∇ X ( Z ) + ( X ( Y f )) Z
Therefore, we obtain the following.
∇ Y ∇ X ( f Z ) − ∇ X ∇ Y ( f Z ) = f ∇ Y ∇ X Z + ( Y f ) ∇ X Z + ( X f ) ∇ Y Z + Y X f Z − ( f ∇ X ∇ Y Z + ( X f ) ∇ Y Z + ( Y f ) ∇ X Z + X Y f Z ) = f ( ∇ Y ∇ X Z − ∇ X ∇ Y Z ) + Y X f Z − X Y f Z = f ( ∇ Y ∇ X Z − ∇ X ∇ Y Z ) − ( [ X , Y ] f ) Z
\begin{align*}
\nabla_{Y} \nabla_{X} (fZ) - \nabla_{X}\nabla_{Y}(fZ)
&= {\color{blue}f\nabla_{Y}\nabla_{X}Z} + {\color{red}\cancel{\color{black}(Yf)\nabla_{X}Z}} + {\color{green}\cancel{\color{black}(Xf)\nabla_{Y}Z}} + YXfZ \\
&\quad - \left( {\color{blue}f\nabla_{X}\nabla_{Y}Z} + {\color{green}\cancel{\color{black}(Xf)\nabla_{Y}Z}} + {\color{red}\cancel{\color{black}(Yf)\nabla_{X}Z}} + XYfZ \right) \\
&= {\color{blue}f(\nabla_{Y}\nabla_{X}Z - \nabla_{X}\nabla_{Y}Z)} + YXfZ - XYfZ \\
&= f(\nabla_{Y}\nabla_{X}Z - \nabla_{X}\nabla_{Y}Z) - ([X,Y]f)Z
\end{align*}
∇ Y ∇ X ( f Z ) − ∇ X ∇ Y ( f Z ) = f ∇ Y ∇ X Z + ( Y f ) ∇ X Z + ( X f ) ∇ Y Z + Y X f Z − ( f ∇ X ∇ Y Z + ( X f ) ∇ Y Z + ( Y f ) ∇ X Z + X Y f Z ) = f ( ∇ Y ∇ X Z − ∇ X ∇ Y Z ) + Y X f Z − X Y f Z = f ( ∇ Y ∇ X Z − ∇ X ∇ Y Z ) − ([ X , Y ] f ) Z
Additionally, since ∇ [ X , Y ] f Z = f ∇ [ X , Y ] Z + ( [ X , Y ] f ) Z \nabla_{[X,Y]} fZ = f\nabla_{[X,Y]}Z + ([X,Y]f)Z ∇ [ X , Y ] f Z = f ∇ [ X , Y ] Z + ([ X , Y ] f ) Z , finally we calculate as follows.
R ( X , Y ) f Z = ∇ Y ∇ X f Z − ∇ X ∇ Y f Z + ∇ [ X , Y ] f Z = f ( ∇ Y ∇ X Z − ∇ X ∇ Y Z ) − ( [ X , Y ] f ) Z + f ∇ [ X , Y ] Z + ( [ X , Y ] f ) Z = f ( ∇ Y ∇ X Z − ∇ X ∇ Y Z ) + f ∇ [ X , Y ] Z = f ( ∇ Y ∇ X Z − ∇ X ∇ Y Z + ∇ [ X , Y ] Z ) = f R ( X , Y ) Z
\begin{align*}
R(X, Y) fZ
&= \nabla_{Y} \nabla_{X} fZ - \nabla_{X} \nabla_{Y} fZ + \nabla_{[X,Y]} fZ \\
&= f(\nabla_{Y}\nabla_{X}Z - \nabla_{X}\nabla_{Y}Z) - ([X,Y]f)Z + f\nabla_{[X,Y]}Z + ([X,Y]f)Z \\
&= f(\nabla_{Y}\nabla_{X}Z - \nabla_{X}\nabla_{Y}Z) + f\nabla_{[X,Y]}Z \\
&= f(\nabla_{Y}\nabla_{X}Z - \nabla_{X}\nabla_{Y}Z + \nabla_{[X,Y]}Z) \\
&= fR(X, Y) Z
\end{align*}
R ( X , Y ) f Z = ∇ Y ∇ X f Z − ∇ X ∇ Y f Z + ∇ [ X , Y ] f Z = f ( ∇ Y ∇ X Z − ∇ X ∇ Y Z ) − ([ X , Y ] f ) Z + f ∇ [ X , Y ] Z + ([ X , Y ] f ) Z = f ( ∇ Y ∇ X Z − ∇ X ∇ Y Z ) + f ∇ [ X , Y ] Z = f ( ∇ Y ∇ X Z − ∇ X ∇ Y Z + ∇ [ X , Y ] Z ) = f R ( X , Y ) Z
■