Binomial operation's Jacobi Identity
📂Abstract Algebra Binomial operation's Jacobi Identity Definition Set S S S and binary operations ∗ : S × S → S \ast : S \times S \to S ∗ : S × S → S , commutative binary operations + : S × S → S + : S \times S \to S + : S × S → S , are considered. The following form of equation is called the Jacobi identity .
a ∗ ( b ∗ c ) + c ∗ ( a ∗ b ) + b ∗ ( c ∗ a ) = 0 , a , b , c ∈ S
a \ast (b \ast c) + c \ast (a \ast b) + b \ast (c \ast a) = 0,\quad a,b,c \in S
a ∗ ( b ∗ c ) + c ∗ ( a ∗ b ) + b ∗ ( c ∗ a ) = 0 , a , b , c ∈ S
If the above equation holds, ∗ \ast ∗ satisfies the Jacobi identity.
Description It refers to an equation where rotating variables and summing them results in 0 0 0 .
The vector cross product × \times × satisfies the Jacobi identity.
x × ( y × z ) + z × ( x × y ) + y × ( z × x ) = 0
\mathbf{x} \times (\mathbf{y} \times \mathbf{z}) + \mathbf{z} \times (\mathbf{x} \times \mathbf{y}) + \mathbf{y} \times (\mathbf{z} \times \mathbf{x}) = 0
x × ( y × z ) + z × ( x × y ) + y × ( z × x ) = 0
In a ring ( R , + , ⋅ ) (R, + , \cdot) ( R , + , ⋅ ) , the commutator [ a , b ] = a b − b a [a, b] = ab - ba [ a , b ] = ab − ba satisfies the Jacobi identity.
a ∗ ( b ∗ c ) + c ∗ ( a ∗ b ) + b ∗ ( c ∗ a ) = a ∗ ( b c − c b ) + c ∗ ( a b − b a ) + b ∗ ( c a − a c ) = ( ( a b c − a c b ) − ( b c a − c b a ) ) + ( ( c a b − c b a ) − ( a b c − b a c ) ) + ( ( b c a − b a c ) − ( c a b − a c b ) ) = 0
\begin{align*}
&a \ast (b \ast c) + c \ast (a \ast b) + b \ast (c \ast a) \\
&= a \ast (bc- cb) + c \ast (ab - ba) + b \ast (ca - ac) \\
&= (({\color{red}\cancel{\color{black}abc}} - {\color{blue}\cancel{\color{black}acb}}) - ({\color{green}\cancel{\color{black}bca}} - {\color{black}\cancel{\color{black}cba}})) + (({\color{magenta}\cancel{\color{black}cab}} - {\color{black}\cancel{\color{black}cba}}) - ({\color{red}\cancel{\color{black}abc}} - {\color{orange}\cancel{\color{black}bac}})) \\
& \quad + (({\color{green}\cancel{\color{black}bca}} - {\color{orange}\cancel{\color{black}bac}}) - ({\color{magenta}\cancel{\color{black}cab}} - {\color{blue}\cancel{\color{black}acb}})) \\
&= 0
\end{align*}
a ∗ ( b ∗ c ) + c ∗ ( a ∗ b ) + b ∗ ( c ∗ a ) = a ∗ ( b c − c b ) + c ∗ ( ab − ba ) + b ∗ ( c a − a c ) = (( ab c − a c b ) − ( b c a − c ba )) + (( c ab − c ba ) − ( ab c − ba c )) + (( b c a − ba c ) − ( c ab − a c b )) = 0
The commutator [ A , B ] = A B − B A [A, B] = AB - BA [ A , B ] = A B − B A of two matrices A , B ∈ M n × n A, B \in M_{n \times n} A , B ∈ M n × n satisfies the Jacobi identity.
The Lie bracket of vector fields [ X , Y ] = X Y − Y X [X, Y] = XY - YX [ X , Y ] = X Y − Y X satisfies the Jacobi identity.