logo

Linear Transformations Between Finite-Dimensional Vector Spaces 📂Linear Algebra

Linear Transformations Between Finite-Dimensional Vector Spaces

Theorem1

Let V,WV, W be a vector space. Let {v1,v2,,vn}\left\{ \mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{n} \right\} and {w1,w2,,wn}\left\{ \mathbf{w}_{1}, \mathbf{w}_{2}, \dots, \mathbf{w}_{n} \right\} be bases of V,WV, W, respectively. Then there exists a unique linear transformation T:VWT : V \to W that satisfies T(vi)=wiT(\mathbf{v}_{i}) = \mathbf{w}_{i}.

Corollary2

Let V,WV, W be a vector space. Let S={v1,v2,,vn}S = \left\{ \mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{n} \right\} be a basis of VV. If U,T:VWU, T : V \to W is a linear transformation and U(vi)=T(vi)U(\mathbf{v}_{i}) = T(\mathbf{v}_{i}), then it follows that U=TU = T.

Generalization3

Let V,WV, W be a vector field, and let β\beta be a basis of VV. Then for some function f:βWf : \beta \to W, there exists a unique linear transformation that satisfies the following.

T:VW by T(x)=f(x)xβ T : V \to W \quad \text{ by } \quad T(x) = f(x) \quad \forall x \in \beta

Proof

Let xV\mathbf{x} \in V. Since {vi}\left\{ \mathbf{v}_{i} \right\} is a basis,

x=aivi \mathbf{x} = \sum a_{i} \mathbf{v}_{i}

there exist unique constants aia_{i} that satisfy the equation. Now, define TT as follows.

T:VW by T(x)=aiwi T : V \to W \quad \text{ by } \quad T(\mathbf{x}) = \sum a_{i}\mathbf{w}_{i}

Then T(vi)=wiT(\mathbf{v}_{i}) = \mathbf{w}_{i} is satisfied.

  • Linearity

If x,yV\mathbf{x}, \mathbf{y} \in V, then

x=aivi,y=bivi \mathbf{x} = \sum a_{i} \mathbf{v}_{i}, \quad \mathbf{y} = \sum b_{i}\mathbf{v}_{i}

cx+y=(cai+bi)vi c \mathbf{x} + \mathbf{y} = \sum (ca_{i} + b_{i})\mathbf{v}_{i}

Therefore,

T(cx+y)=(cai+bi)wi=caiwi+biwi=cT(x)+T(y) T(c \mathbf{x} + \mathbf{y}) = \sum (ca_{i} + b_{i})\mathbf{w}_{i} = c\sum a_{i}\mathbf{w}_{i} + \sum b_{i}\mathbf{w}_{i} = cT(\mathbf{x}) + T(\mathbf{y})

  • Uniqueness

Let the linear transformation U:VWU : V \to W satisfy U(vi)=wiU(\mathbf{v}_{i}) = \mathbf{w}_{i}. Then, for x=aiviV\mathbf{x} = \sum a_{i} \mathbf{v}_{i} \in V,

U(x)=aiU(vi)=aiwi=T(x) U(\mathbf{x}) = \sum a_{i} U(\mathbf{v}_{i}) = \sum a_{i} \mathbf{w}_{i} = T(\mathbf{x})


  1. Stephen H. Friedberg, Linear Algebra (4th Edition, 2002), p72-73 ↩︎

  2. Stephen H. Friedberg, Linear Algebra (4th Edition, 2002), p73 ↩︎

  3. Stephen H. Friedberg, Linear Algebra (4th Edition, 2002), p78 ↩︎