Differential Forms of Type k
📂GeometryDifferential Forms of Type k
Definition
Let ω=I∑aIdxI be a k-form on the n-dimensional differential manifold M. The exterior differential dω of ω is defined as follows:
dω:=I∑daI∧dxI
Here, ∧ is the wedge product.
Description
Since daI is a 1-form and dxI is a k-form, dω is a (k+1)-form.
Example
Let ω be a 1-form given in R3 as follows:
ω=xyzdx+yzdy+(x+z)dz
Then, dω is as follows:
dω=d(xyz)∧dx+d(yz)∧dy+d(x+z)∧dz=(yzdx+xzdy+xydz)∧dx+(zdy+ydz)∧dy+(dx+dz)∧dz=xzdy∧dx+xydz∧dx+ydz∧dy+dx∧dz=−xzdx∧dy−xydx∧dz−ydy∧dz+dx∧dz=−xzdx∧dy+(1−xy)dx∧dz−ydy∧dz
Properties
(a) When ω1,ω2 is a k-form,
d(ω1+ω2)=dω1+dω2
(b) When ω is a k-form and φ is a s-form,
d(ω∧φ)=dω∧φ+(−1)kω∧dφ
(c) d(dω)=d2ω=0
(d) When N,M is a n,m-dimensional differential manifold respectively, ω is a k-form on M, and f:N→M is a differentiable function,
d(f∗ω)=f∗(dω)
Here, f∗ω is the pullback of ω.
Proof
(a)
Let ω1=I∑aIdxI and ω2=I∑bIdxI. Then, by the properties of the sum and wedge product of differential forms,
d(ω1+ω2)=d(I∑(aI+bI)dxI)=I∑d(aI+bI)∧dxI=I∑(daI+dbI)∧dxI=I∑(daI∧dxI+dbI∧dxI)=I∑daI∧dxI+I∑dbI∧dxI=dω1+dω2
■
(b)
Let ω=I∑aIdxI and φ=J∑bJdxJ. Then,
d(ω∧φ)=d(I∑aIdxI∧J∑bJdxJ)=dI,J∑aIbJdxI∧dxJ=I,J∑d(aIbJ)∧dxI∧dxJ=I,J∑(bJdaI+aIdbJ)∧dxI∧dxJ=I,J∑bJdaI∧dxI∧dxJ+I,J∑aIdbJ∧dxI∧dxJ=(I∑daI∧dxI)∧J∑bJdxJ+(−1)kI,J∑aIdxI∧dbJ∧dxJ=dω∧φ+(−1)k(I∑aIdxI)∧(J∑dbJ∧dxJ)=dω∧φ+(−1)kω∧dφ
■
(c)
Let ω be a 0-form.
ω=f:M→R
Then,
d(dω)=d(df)=d(i=1∑n∂xi∂fdxi)=i∑d(∂xi∂f)∧dxi=i∑(j∑∂xj∂∂xi∂fdxj)∧dxi=i,j∑(∂xj∂xi∂2fdxj)∧dxi={00i=ji=j=0
In the case of i=j, since dxi∧dxi=0, it follows that 0. In the case of i=j,
(∂xj∂xi∂2fdxj)∧dxi+(∂xi∂xj∂2fdxi)∧dxj