logo

Pull Back in Differential Geometry 📂Geometry

Pull Back in Differential Geometry

Overview

We define the pullback on a differential manifold. If differential manifolds are complex, one can think of M=RmM = \mathbb{R}^{m} and N=RnN = \mathbb{R}^{n}.

Definition1

Given two differential manifolds M,NM, N and a differentiable function f:MNf : M \to N, we can consider a function ff^{\ast} that maps NN’s kk-forms to MM’s kk-forms. Let ω\omega be a kk-form on the manifold NN, then a kk-form fωf^{\ast}\omega on the manifold MM is defined as the pullback of ω\omega as follows.

(fω)(p)(v1,,vk):=ω(f(p))(dfpv1,,dfpvk),viTpM \begin{equation} (f^{\ast}\omega)(p) (v_{1}, \dots, v_{k}) := \omega (f(p))\left( df_{p}v_{1}, \dots, df_{p}v_{k} \right),\quad v_{i} \in T_{p}M \end{equation}

Explanation

The name pullback implies that, contrary to ff mapping from MM to NN, ff^{\ast} maps from NN to MM. The definition and notation are quite complex, so let’s understand them step by step.

  • ff^{\ast}

ff^{\ast} is a map that sends kk-forms of NN to kk-forms of M.Therefore,ifM. Therefore, if \omegaisa is a kformof-form of N,then, then f^{\ast}\omega = f^{\ast}(\omega)isa is a kformof-form of M.

  • fω(p)f^{\ast}\omega (p)

A kk-form on the manifold MM maps pMp \in M to an element of Λk(TpM)\Lambda^{k}(T_{p}^{\ast}M).

fω:MΛk(TpM) f^{\ast}\omega : M \to \Lambda^{k}(T_{p}^{\ast}M)

Λk(TpM):={φ:TpM××TpMk timesR  φ is k-linear alternating map} \Lambda^{k} (T_{p}^{\ast}M) := \left\{ \varphi : \underbrace{T_{p}M \times \cdots \times T_{p}M}_{k \text{ times}} \to \mathbb{R}\ | \ \varphi \text{ is k-linear alternating map} \right\}

In other words, fω(p)Λk(TpM)f^{\ast}\omega (p) \in \Lambda^{k} (T_{p}^{\ast}M) is also a function. By the definition of Λk(TpM)\Lambda^{k} (T_{p}^{\ast}M), fω(p)f^{\ast}\omega (p) takes “kk tangent vectors at pp” as variables. Thus, (1)(1) is the expression that specifically defines this function’s value. To emphasize that f(p)f^{\ast}(p) itself is a function, let’s use the following notation.

(fω)p=fω(p) (f^{\ast}\omega)_{p} = f^{\ast}\omega (p)

  • ω(f(p))\omega (f(p))

Since ω\omega is a kk-form of NN, it maps the point f(p)f(p) of NN to an element of Λk(Tf(p)N)\Lambda^{k}(T_{f(p)}^{\ast}N).

Λk(Tf(p)N):={φ:Tf(p)N××Tf(p)Nk timesR  φ is k-linear alternating map} \Lambda^{k} (T_{f(p)}^{\ast}N) := \left\{ \varphi : \underbrace{T_{f(p)}N \times \cdots \times T_{f(p)}N}_{k \text{ times}} \to \mathbb{R}\ | \ \varphi \text{ is k-linear alternating map} \right\}

By the definition of Λk(Tf(p)N)\Lambda^{k} (T_{f(p)}^{\ast}N), ω(f(p))\omega (f(p)) is also a function. ω(f(p))\omega (f(p)) takes “kk tangent vectors at f(p)f(p)” as variables. Here too, to emphasize that ω(f(p))\omega (f(p)) itself is a function, let’s use the following notation.

ωf(p)=ω(f(p)) \omega_{f(p)} = \omega (f(p))

  • dfpvidf_{p}v_{i}

dfp:TpMTf(p)N df_{p} : T_{p}M \to T_{f(p)}N

For f:MNf : M \to N, the differential dfpdf_{p} of ff is defined as above. Therefore, if viTpMv_{i} \in T_{p}M, then dfpvi=dfp(vi)df_{p}v_{i} = df_{p}(v_{i}) is an element of Tf(p)NT_{f(p)}N.

Now, combining these, we obtain (1)(1).

(fω)p(v1,,vk):=ωf(p)(dfpv1,,dfpvk),viTpM (f^{\ast}\omega)_{p} (v_{1}, \dots, v_{k}) := \omega_{f(p)}\left( df_{p}v_{1}, \dots, df_{p}v_{k} \right),\quad v_{i} \in T_{p}M

The domains of these two functions show the following difference.

(fω)p:TpM××TpMk timesRωf(p):Tf(p)N××Tf(p)Nk timesR \begin{align*} (f^{\ast}\omega)_{p} : && \underbrace{T_{p}M \times \cdots \times T_{p}M}_{k \text{ times}} &\to \mathbb{R} \\ \omega_{f(p)} : && \underbrace{T_{f(p)}N \times \cdots \times T_{f(p)}N}_{k \text{ times}} &\to \mathbb{R} \end{align*}

Think of the differential dfp:TpMTf(p)Ndf_{p} : T_{p}M \to T_{f(p)}N as bridging this difference. Hence, dfpdf_{p} is also called push forward. For a 11-form φ\varphi, the following holds true.

φ(dfv)=fφ(v) \begin{equation} \varphi( dfv) = f^{\ast}\varphi(v) \end{equation}

Pullback of 00-forms

Let’s consider f:MNf : M \to N as a function defined between two differential manifolds. Let g:NRg : N \to \mathbb{R} be a function (a 00-form of NN). The pullback fg:MRf^{\ast}g : M \to \mathbb{R} is defined as the following function (a 00-form of MM).

fg:=gf f^{\ast}g := g \circ f

Coordinate Transformation

Let’s assume a function f:RnRmf : \mathbb{R}^{n} \to \mathbb{R}^{m} is given. Let x=(x1,,xn)Rn\mathbf{x} = (x_{1}, \dots ,x_{n}) \in \mathbb{R}^{n}, and y=(y1,,ym)Rm\mathbf{y} = (y_{1}, \dots ,y_{m}) \in \mathbb{R}^{m}.

f(x1,,xn)=(f1(x),,fm(x))=(y1,,ym) f(x_{1}, \dots, x_{n}) = (f_{1}(\mathbf{x}), \dots, f_{m}(\mathbf{x}) )= (y_{1}, \dots ,y_{m})

And let ω=IaIdyI\omega = \sum\limits_{I} a_{I} dy_{I} be a kk-form on Rm\mathbb{R}^{m}. Then the pullback fωf^{\ast}\omega is as follows, based on these properties.

fω=f(aIdyI)=f(aIdyI)=faIfdyI=faIf(dyi1dyik)=faI(fdyi1fdyik) \begin{align*} f^{\ast} \omega &= f^{\ast} \left( \sum a_{I}dy_{I} \right) \\ &= \sum f^{\ast} \left( a_{I}dy_{I} \right) \\ &= \sum f^{\ast}a_{I} f^{\ast}dy_{I} \\ &= \sum f^{\ast}a_{I} f^{\ast}(dy_{i1} \wedge \cdots \wedge dy_{ik}) \\ &= \sum f^{\ast}a_{I} (f^{\ast}dy_{i1} \wedge \cdots \wedge f^{\ast}dy_{ik}) \end{align*}

Here, due to (2)(2), fdyi1(v)=dyi1(df(v))=d(yi1f)(v)=dfi1(v)f^{\ast}dy_{i1}(v) = dy_{i1}(df(v)) = d(y_{i1}\circ f)(v) = df_{i1}(v), and faI=aIff^{\ast}a_{I} = a_{I} \circ f, so,

fω=aI(f1,fm)dfi1dfik \begin{equation} f^{\ast} \omega = \sum a_{I}(f_{1}, \dots f_{m}) df_{i1} \wedge \cdots \wedge df_{ik} \end{equation}

This formula signifies coordinate transformation. Let’s see how it specifically works in the following example.

Example

Let’s assume a 11-form ω\omega on R2{0,0}\mathbb{R}^{2} \setminus \left\{ 0, 0 \right\} is as follows.

ω=yx2+y2dx+xx2+y2dy=a1dx+a2dy \omega = - \dfrac{y}{x^{2} + y^{2}}dx + \dfrac{x}{x^{2} + y^{2}}dy = a_{1}dx + a_{2}dy

Let’s transform this 11-form in Cartesian coordinates to polar coordinates. Let U={(r,θ):0<r,0θ<2π}U = \left\{ (r,\theta) : 0 \lt r, 0 \le \theta \lt 2\pi \right\}. And let f:UR2f : U \to \mathbb{R}^{2} be as follows.

f(r,θ)=(rcosθ,rsinθ)=(f1,f2) f(r,\theta) = (r\cos\theta, r\sin\theta) = (f_{1}, f_{2})

Now, let’s calculate df1,df2df_{1}, df_{2}. Since f1=rcosθ,f2=rsinθf_{1} = r\cos\theta, f_{2}=r\sin\theta,

df1=f1rdr+f1θdθ=cosθdrrsinθdθdf2=f2rdr+f2θdθ=sinθdr+rcosθdθ \begin{align*} df_{1} &= \dfrac{\partial f_{1}}{\partial r}dr + \dfrac{\partial f_{1}}{\partial \theta}d\theta = \cos\theta dr - r \sin \theta d\theta \\ df_{2} &= \dfrac{\partial f_{2}}{\partial r}dr + \dfrac{\partial f_{2}}{\partial \theta}d\theta = \sin\theta dr + r \cos \theta d\theta \\ \end{align*}

Then, by (3)(3),

fω=a1(f1,f2)df1+a2(f1,f2)df2=f2f12+f22(cosθdrrsinθdθ)+f1f12+f22df2(sinθdr+rcosθdθ)=rsinθr2cos2θ+r2sin2θ(cosθdrrsinθdθ)+rcosθr2cos2θ+r2sin2θ(sinθdr+rcosθdθ)=sinθcosθrdr+sin2θdθ+cosθsinθrdr+cos2θdθ=dθ \begin{align*} f^{\ast} \omega &= a_{1}(f_{1}, f_{2})df_{1} + a_{2}(f_{1}, f_{2})df_{2} \\ &= - \dfrac{f_{2}}{f_{1}^{2} + f_{2}^{2}}(\cos\theta dr - r \sin \theta d\theta) + \dfrac{f_{1}}{f_{1}^{2} + f_{2}^{2}}df_{2}(\sin\theta dr + r \cos \theta d\theta) \\ &= - \dfrac{r\sin\theta}{r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta}(\cos\theta dr - r \sin \theta d\theta) \\ &\quad + \dfrac{r\cos\theta}{r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta}(\sin\theta dr + r \cos \theta d\theta) \\ &= -\dfrac{\sin\theta \cos\theta}{r}dr + \sin^{2}\theta d\theta + \dfrac{\cos\theta \sin\theta}{r}dr + \cos^{2}\theta d\theta \\ &= d\theta \end{align*}

Therefore,

yx2+y2dx+xx2+y2dy=dθ \int - \dfrac{y}{x^{2} + y^{2}}dx + \dfrac{x}{x^{2} + y^{2}}dy = \int d\theta

Properties

Let M,NM, N be differential manifolds of dimensions m,nm, n respectively, and let f:MNf : M \to N. Let ω,φ\omega, \varphi be kk-forms on NN. Let gg be a 00-form on NN. Let φi\varphi_{i}s be 11-forms on $N. Then, the following hold true.

f(ω+φ)= fω+fφf(gω)= (fg)(fω)f(φ1φk)= f(φ1)f(φk) \begin{align} f^{\ast} (\omega + \varphi) =&\ f^{\ast}\omega + f^{\ast}\varphi \tag{a} \\ f^{\ast} (g \omega) =&\ (f^{\ast}g) (f^{\ast}\omega) \tag{b} \\ f^{\ast} (\varphi_{1} \wedge \cdots \wedge \varphi_{k}) =&\ f^{\ast}(\varphi_{1}) \wedge \cdots \wedge f^{\ast}(\varphi_{k}) \tag{c} \end{align}

Here, ++ and \wedge represent the sum and wedge product of kk-forms, respectively.

Let ω,φ\omega, \varphi be arbitrary forms on N.LetN. Let Lbea be a ldimensionaldifferentialmanifold,andlet-dimensional differential manifold, and let g : L \to N$.

f(ωφ)=(fω)(fφ)(fg)ω=g(fω) \begin{align*} f^{\ast}(\omega \wedge \varphi) &= (f^{\ast}\omega) \wedge (f^{\ast}\varphi) \tag{d} \\ (f \circ g)^{\ast} \omega &= g^{\ast}(f^{\ast}\omega) \tag{e} \end{align*}

Proof

Proof (a)(a)

(f(ω+φ))p(v1,,vk)= (ω+φ)f(p)(dfpv1,,dfpvk)= ωf(p)(dfpv1,,dfpvk)+φf(p)(dfpv1,,dfpvk)= (fω)p(v1,,vk)+(fφ)p(v1,,vk)= (fω+fφ)p(v1,,vk) \begin{align*} (f^{\ast}(\omega + \varphi))_{p} (v_{1}, \dots, v_{k}) =&\ (\omega + \varphi)_{f(p)} \left( df_{p}v_{1}, \dots, df_{p}v_{k} \right) \\ =&\ \omega_{f(p)} \left( df_{p}v_{1}, \dots, df_{p}v_{k} \right) + \varphi_{f(p)} \left( df_{p}v_{1}, \dots, df_{p}v_{k} \right) \\ =&\ (f^{\ast} \omega)_{p}(v_{1}, \dots, v_{k}) + (f^{\ast} \varphi)_{p}(v_{1}, \dots, v_{k}) \\ =&\ \left( f^{\ast}\omega + f^{\ast}\varphi \right)_{p}(v_{1}, \dots, v_{k}) \end{align*}

Proof (b)(b)

Let’s define the product of a 00-form gg and a kk-form ω\omega as follows.

(gω)(p)=g(p)ω(p) (g\omega)(p) = g(p) \omega (p)

Note that g(p)=gpg(p) = g_{p} is a scalar, and ω(p)=ωp\omega (p) = \omega_{p} is a function. Then,

(f(gω))p(v1,,vk)= gωf(p)(dfpv1,,dfpvk)= gf(p)ωf(p)(dfpv1,,dfpvk)= gf(p)ωf(p)(dfpv1,,dfpvk)= (fg)p(fω)p(v1,,vk) \begin{align*} (f^{\ast} (g\omega))_{p} (v_{1}, \dots, v_{k}) =&\ g\omega_{f(p)} \left( df_{p}v_{1}, \dots, df_{p}v_{k} \right) \\ =&\ g_{f(p)} \omega_{f(p)} (df_{p}v_{1}, \dots, df_{p}v_{k}) \\ =&\ g\circ f(p) \omega_{f(p)} (df_{p}v_{1}, \dots, df_{p}v_{k}) \\ =&\ (f^{\ast}g)_{p} (f^{\ast}\omega)_{p} (v_{1}, \dots, v_{k}) \end{align*}

Proof (c)(c)

(f(φ1φk))p(v1,,vk)= (φ1φk)f(p)(df1,,dfk)= det[φidf(vj)]= det[fφi(vj)] \begin{align*} (f^{\ast}\left( \varphi_{1} \wedge \cdots \wedge \varphi_{k} \right))_{p} (v_{1}, \dots, v_{k}) =&\ (\varphi_{1} \wedge \dots \wedge \varphi_{k})_{f(p)} \left( df_{1}, \dots, df_{k} \right) \\ =&\ \det [\varphi_{i}df(v_{j})] \\ =&\ \det [ f^{\ast} \varphi_{i}(v_{j})] \\ \end{align*}


  1. Manfredo P. Do Carmo, Differential Forms and Applications, p6-8 ↩︎