logo

Second-Order Differential Form 📂Geometry

Second-Order Differential Form

Overview

We define the binary operation \wedge and, in the sense that we defined the first-order differential form, we define a second-order form for the differential manifold MM.

If differential manifolds seem difficult, one can think of them as M=RnM = \mathbb{R}^{n}.

Buildup1

Let’s consider the first-order form ω\omega.

ω:MTMpωp \begin{align*} \omega : M &\to T^{\ast}M \\ p &\mapsto \omega_{p} \end{align*}

This maps a point pp of a nn-dimensional differential manifold MM to an element ωpTpM\omega_{p} \in T_{p}^{\ast}M of the cotangent space. Then, since ωp\omega_{p} is an element of the dual space of TpMT_{p}M, it is a functional as follows.

wp:TpMR w_{p} : T_{p}M \to \mathbb{R}

In summary, the ‘first-order’ form can be thought of as mapping the point pp to a function ωp\omega_{p} taking ‘one’ tangent vector at pp as a variable. In this sense, we will define the ‘second-order’ form.

Wedge Product

Let’s call the function φ:TpM×TpMR\varphi : T_{p}M \times T_{p}M \to \mathbb{R} a bilinear alternating function.

φ(v1,v2)=φ(v2,v1),viTpM \varphi (v_{1}, v_{2}) = - \varphi (v_{2}, v_{1}),\quad v_{i} \in T_{p}M

Let’s denote the set of such φ\varphis as Λ2(TpM)\Lambda^{2} (T_{p}^{\ast}M).

Λ2(TpM):={φ:TpM×TpMR  φ is bilinear and alternate} \Lambda^{2} (T_{p}^{\ast}M) := \left\{ \varphi : T_{p}M \times T_{p}M \to \mathbb{R}\ | \ \varphi \text{ is bilinear and alternate} \right\}

Now, let’s define a binary operation :TpM×TpMΛ2(TpM)\wedge : T_{p}^{\ast}M \times T_{p}^{\ast}M \to \Lambda^{2} (T_{p}^{\ast}M) that sends two elements of TpMT_{p}^{\ast}M to Λ2(TpM)\Lambda^{2} (T_{p}^{\ast}M). This means to express the elements of Λ2(TpM)\Lambda^{2} (T_{p}^{\ast}M) in terms of elements of TpMT_{p}^{\ast}M. Then, when we say φ1,φ2TpM\varphi_{1}, \varphi_{2} \in T_{p}^{\ast}M, since Λ2(TpM)\Lambda^{2} (T_{p}^{\ast}M) is a set of alternating functions, the following must be true. (Note that the symbol \wedge itself is read as [wedge], and the binary operation \wedge is called the wedge product or exterior product. The TeX code is \wedge)

φ1φ2Λ2(TpM) \varphi_{1} \wedge \varphi_{2} \in \Lambda^{2} (T_{p}^{\ast}M)

(φ1φ2)(v1,v2)=(φ1φ2)(v2,v1),viTpM (\varphi_{1} \wedge \varphi_{2}) (v_{1}, v_{2}) = - (\varphi_{1} \wedge \varphi_{2}) (v_{2}, v_{1}),\quad v_{i} \in T_{p}M

If we define \wedge as follows, it exactly satisfies the above condition.

(φ1φ2)(v1,v2):=det[ϕi(vj)] (\varphi_{1} \wedge \varphi_{2})(v_{1}, v_{2}) := \det \left[ \phi_{i}(v_{j}) \right]

Here, ii represents the row index, and jj represents the column index. Of course, the wedge product \wedge itself becomes an alternating function.

Alternating Property

(φ1φ2)(v1,v2)= det[φi(vj)]= φ1(v1)φ1(v2)φ2(v1)φ2(v2)= φ1(v2)φ1(v1)φ2(v2)φ2(v1)by property of determinant= (φ1φ2)(v2,v1) \begin{align*} (\varphi_{1} \wedge \varphi_{2})(v_{1}, v_{2}) =&\ \det \left[ \varphi_{i}(v_{j}) \right] \\ =&\ \begin{vmatrix} \varphi_{1}(v_{1}) & \varphi_{1}(v_{2}) \\ \varphi_{2}(v_{1}) & \varphi_{2}(v_{2}) \end{vmatrix} \\ =&\ - \begin{vmatrix} \varphi_{1}(v_{2}) & \varphi_{1}(v_{1}) \\ \varphi_{2}(v_{2}) & \varphi_{2}(v_{1}) \end{vmatrix} & \text{by property of determinant} \\ =&\ - (\varphi_{1} \wedge \varphi_{2})(v_{2}, v_{1}) \end{align*}

Linearity

for aR\text{for } a\in \mathbb{R},

(φ1φ2)(av1+v2,w)= φ1(av1+v2)φ1(w)φ2(av1+v2)φ2(w)= aφ1(v1)+φ1(v2)φ1(w)aφ2(v1)+φ2(v2)φ2(w)by linearity of φi= aφ1(v1)φ1(w)aφ2(v1)φ2(w)+φ1(v2)φ1(w)φ2(v2)φ2(w)by property of determinant= aφ1(v1)φ1(w)φ2(v1)φ2(w)+φ1(v2)φ1(w)φ2(v2)φ2(w)by property of determinant= a(φ1φ2)(v1,w)+(φ1φ2)(v2,w) \begin{align*} & (\varphi_{1} \wedge \varphi_{2})(av_{1} + v_{2}, w) \\[1em] =&\ \begin{vmatrix} \varphi_{1}(av_{1}+v_{2}) & \varphi_{1}(w) \\ \varphi_{2}(av_{1}+v_{2}) & \varphi_{2}(w) \end{vmatrix} \\[1em] =&\ \begin{vmatrix} a\varphi_{1}(v_{1}) + \varphi_{1}(v_{2}) & \varphi_{1}(w) \\ a\varphi_{2}(v_{1}) + \varphi_{2}(v_{2}) & \varphi_{2}(w) \end{vmatrix} & \text{by linearity of } \varphi_{i} \\[1em] =&\ \begin{vmatrix} a\varphi_{1}(v_{1}) & \varphi_{1}(w) \\ a\varphi_{2}(v_{1}) & \varphi_{2}(w) \end{vmatrix} + \begin{vmatrix}\varphi_{1}(v_{2}) & \varphi_{1}(w) \\ \varphi_{2}(v_{2}) & \varphi_{2}(w) \end{vmatrix} & \text{by property of determinant} \\[1em] =&\ a\begin{vmatrix} \varphi_{1}(v_{1}) & \varphi_{1}(w) \\ \varphi_{2}(v_{1}) & \varphi_{2}(w) \end{vmatrix} + \begin{vmatrix} \varphi_{1}(v_{2}) & \varphi_{1}(w) \\ \varphi_{2}(v_{2}) & \varphi_{2}(w) \end{vmatrix} & \text{by property of determinant} \\[1em] =&\ a(\varphi_{1} \wedge \varphi_{2})(v_{1}, w) + (\varphi_{1} \wedge \varphi_{2})(v_{2}, w) \end{align*}

Basis

Now, let’s consider the wedge products of the basis {(dxj)p}j\left\{ (dx_{j})_{p} \right\}_{j}s of TpMT_{p}^{\ast}M. If you are quick to catch on, you might guess that these will be the basis of Λ2(TpM)\Lambda^{2} (T_{p}^{\ast}M). For convenience, let’s denote it as follows.

(dxidxj)p=notation(dxi)p(dxj)pΛ2(TpM) (dx_{i} \wedge dx_{j})_{p} \overset{\text{notation}}{=} (dx_{i})_{p} \wedge (dx_{j})_{p} \in \Lambda^{2} (T_{p}^{\ast}M)

Then, {(dxidxj)p:i<j}\left\{ (dx_{i} \wedge dx_{j})_{p} : i \lt j \right\} actually becomes the basis of Λ2(TpM)\Lambda^{2} (T_{p}^{\ast}M), and the following holds.

(dxidxj)p=(dxjdxi)p,ij(dxidxi)p=0 (dx_{i} \wedge dx_{j})_{p} = - (dx_{j} \wedge dx_{i})_{p},\quad i \ne j \\[1em] (dx_{i} \wedge dx_{i})_{p} = 0

Now we are ready to define the second-order form.

Definition

We define the function ω:MΛ2(TpM)\omega : M \to \Lambda^{2} (T_{p}^{\ast}M) that maps a point pMp \in M as follows as a second-order form in MM.

ω(p)=a12(p)(dx1dx2)p+a13(p)(dx1dx3)p+a23(p)(dx2dx3)p \omega (p) = a_{12}(p)(dx_{1} \wedge dx_{2})_{p} + a_{13}(p)(dx_{1} \wedge dx_{3})_{p} + a_{23}(p)(dx_{2} \wedge dx_{3})_{p}

ω\omega is simply denoted as follows.

ω= a12dx1dx2+a13dx1dx3+a23dx2dx3= aijdxidxj(i<j)by Einstein notation \begin{align*} \omega =&\ a_{12}dx_{1} \wedge dx_{2} + a_{13}dx_{1} \wedge dx_{3} + a_{23}dx_{2} \wedge dx_{3} \\ =&\ a_{ij}dx_{i}\wedge dx_{j} (i \lt j) & \text{by Einstein notation} \end{align*}

At this time, aij:MRa_{ij} : M \to \mathbb{R}. If each of aija_{ij} is differentiable, ω\omega is called a second-order differential form.

See Also


  1. Manfredo P. Do Carmo, Differential Forms and Applications, p2 ↩︎