Cotangent Space and First-Order Differential Forms
📂Geometry Cotangent Space and First-Order Differential Forms Overview We define the cotangent space and the differential 1-form. If differential manifolds are challenging, one can think of it as M = R n M = \mathbb{R}^{n} M = R n .
We use Einstein notation .
Cotangent Space Let’s consider a M M M as a n n n -dimensional differential manifold . Then, the tangent space T p M T_{p}M T p M at point p ∈ M p \in M p ∈ M becomes a n n n -dimensional vector space (function space), with the basis being { e i = ∂ ∂ x i ∣ p } i \left\{ \mathbf{e}_{i} = \left. \frac{\partial }{\partial x_{i}}\right|_{p} \right\}_{i} { e i = ∂ x i ∂ p } i .
At this time, the dual space T p ∗ M T_{p}^{\ast}M T p ∗ M of the tangent space T p M T_{p} M T p M is called the cotangent space .
T p ∗ M : = { ψ : T p M → R ∣ ψ is continuous and linear }
T_{p}^{\ast}M := \left\{ \psi : T_{p}M \to \mathbb{R}\ |\ \psi \text{ is continuous and linear} \right\}
T p ∗ M := { ψ : T p M → R ∣ ψ is continuous and linear }
Description Due to the properties of the dual space , dim T p M = n = dim T p ∗ M \dim T_{p}M = n = \dim T_{p}^{\ast}M dim T p M = n = dim T p ∗ M , and the dual basis { ( d x j ) p } \left\{ (dx_{j})_{p} \right\} { ( d x j ) p } is defined as the following function.
( d x j ) p : T p M → R
(dx_{j})_{p} : T_{p}M \to \mathbb{R}
( d x j ) p : T p M → R
( d x j ) p ( ∂ ∂ x k ∣ p ) = δ j k = { 1 , j = k 0 , j ≠ k
(dx_{j})_{p} \left(\textstyle \left. \frac{\partial }{\partial x_{k}}\right|_{p} \right) = \delta_{jk} = \begin{cases}
1, & j=k
\\ 0, & j\ne k
\end{cases}
( d x j ) p ( ∂ x k ∂ p ) = δ jk = { 1 , 0 , j = k j = k
Any ω p ∈ T p ∗ M \omega_{p} \in T_{p}^{\ast}M ω p ∈ T p ∗ M can be expressed as follows against the basis { ( d x j ) p } \left\{ (dx_{j})_{p} \right\} { ( d x j ) p } .
ω p = ( a p 1 , a p 2 , a p 3 ) , a p i ∈ R = a p 1 ( d x 1 ) p + a p 2 ( d x 1 ) p + a p 3 ( d x 3 ) p
\begin{align*}
\omega_{p} =&\ (a_{p}^{1}, a_{p}^{2}, a_{p}^{3}),\quad a_{p}^{i} \in \mathbb{R}
\\[1em] =&\ a_{p}^{1}(dx_{1})_{p} + a_{p}^{2}(dx_{1})_{p} + a_{p}^{3}(dx_{3})_{p}
\end{align*}
ω p = = ( a p 1 , a p 2 , a p 3 ) , a p i ∈ R a p 1 ( d x 1 ) p + a p 2 ( d x 1 ) p + a p 3 ( d x 3 ) p
Then, let’s consider the function ω \omega ω mapping each point p ∈ M p \in M p ∈ M to ω p ∈ T p ∗ M \omega_{p} \in T_{p}^{\ast}M ω p ∈ T p ∗ M .
A ω \omega ω mapping each point p ∈ M p\in M p ∈ M on the differential manifold M M M to the element ω p ∈ T p ∗ M \omega_{p} \in T_{p}^{\ast}M ω p ∈ T p ∗ M of the cotangent space is called a 1-form .
ω : M → T ∗ M p ↦ ω p
\begin{align*}
\omega : M &\to T^{\ast}M
\\ p &\mapsto \omega_{p}
\end{align*}
ω : M p → T ∗ M ↦ ω p
In this case, T ∗ M = ⋃ p ∈ M T p ∗ M T^{\ast}M = \bigcup \limits_{p \in M} T_{p}^{\ast}M T ∗ M = p ∈ M ⋃ T p ∗ M is called a cotangent bundle.
Description A 1-form is also known as a first-order form, and it is referred to as the exterior form of degree 1, field of linear form, etc., in English.
If a function is a i a_{i} a i , where a i : M → R a_{i} : M \to \mathbb{R} a i : M → R and a i ( p ) = a p i a_{i}(p) = a_{p}^{i} a i ( p ) = a p i , then ω p \omega_{p} ω p can be expressed as follows.
ω p = ω ( p ) = ( a 1 ( p ) , a 2 ( p ) , a 3 ( p ) ) = a 1 ( p ) ( d x 1 ) p + a 2 ( p ) ( d x 1 ) p + a 3 ( p ) ( d x 3 ) p
\begin{align*}
\omega_{p} = \omega (p) =&\ (a_{1}(p), a_{2}(p), a_{3}(p))
\\ =&\ a_{1}(p)(dx_{1})_{p} + a_{2}(p)(dx_{1})_{p} + a_{3}(p)(dx_{3})_{p}
\end{align*}
ω p = ω ( p ) = = ( a 1 ( p ) , a 2 ( p ) , a 3 ( p )) a 1 ( p ) ( d x 1 ) p + a 2 ( p ) ( d x 1 ) p + a 3 ( p ) ( d x 3 ) p
Then, ω \omega ω is as follows. When using Einstein’s notation ,
ω = a 1 d x 1 + a 2 d x 2 + a 3 d x 3 = a i d x i
\omega = a_{1}dx_{1} + a_{2}dx_{2} + a_{3}dx_{3} = a_{i}dx_{i}
ω = a 1 d x 1 + a 2 d x 2 + a 3 d x 3 = a i d x i
If each a i a_{i} a i is a differentiable function, then ω \omega ω is called a differential form of degree 1 .
This abstract talk might make it hard to understand its meaning. Differential forms provide the theoretical backdrop for dealing with d x dx d x and d y dy d y freely in calculus. Let’s look at an example in Euclidean space. Consider a function f : R n → R f : \mathbb{R}^{n} \to \mathbb{R} f : R n → R . Then, the differentiation of f f f is d f p : T p R n → T f ( p ) R df_{p} : T_{p}\mathbb{R}^{n} \to T_{f(p)}\mathbb{R} d f p : T p R n → T f ( p ) R . If v ∈ T p R n v \in T_{p}\mathbb{R}^{n} v ∈ T p R n ,
v = ∑ i v i ∂ ∂ x i = v i ∂ ∂ x i = ( v 1 , … , v n )
v = \sum\limits_{i} v_{i}\dfrac{\partial }{\partial x_{i}} = v_{i}\dfrac{\partial }{\partial x_{i}} = (v_{1}, \dots, v_{n})
v = i ∑ v i ∂ x i ∂ = v i ∂ x i ∂ = ( v 1 , … , v n )
If the coordinates of R \mathbb{R} R are y y y , then the basis of T f ( p ) R T_{f(p)}\mathbb{R} T f ( p ) R is { ∂ ∂ y } \left\{ \dfrac{\partial }{\partial y} \right\} { ∂ y ∂ } , and substituting v v v into the differential yields,
d f p ( v ) = [ ∂ f ∂ x 1 ⋯ ∂ f ∂ x n ] [ v 1 ⋮ v n ] = [ v i ∂ f ∂ x i ] = ( v i ∂ f ∂ x i ) ∂ ∂ y
\begin{align*}
df_{p} (v)
&= \begin{bmatrix}\dfrac{\partial f}{\partial x_{1}} & \cdots & \dfrac{\partial f}{\partial x_{n}}\end{bmatrix}
\begin{bmatrix}v_{1} \\ \vdots \\ v_{n} \end{bmatrix} \\
&= \begin{bmatrix} v_{i} \dfrac{\partial f}{\partial x_{i}}\end{bmatrix} \\
&= \left( v_{i} \dfrac{\partial f}{\partial x_{i}} \right) \dfrac{\partial }{\partial y}
\end{align*}
d f p ( v ) = [ ∂ x 1 ∂ f ⋯ ∂ x n ∂ f ] v 1 ⋮ v n = [ v i ∂ x i ∂ f ] = ( v i ∂ x i ∂ f ) ∂ y ∂
Now, let’s look at the R n \mathbb{R}^{n} R n ’s 1 1 1 -form ω p = ∂ f ∂ x i d x i \omega_{p} = \dfrac{\partial f}{\partial x_{i}}dx_{i} ω p = ∂ x i ∂ f d x i . By substituting v v v ,
w p ( v ) = ∂ f ∂ x i d x i ( v ) = ∂ f ∂ x i d x i ( v j ∂ ∂ x j ) = ∂ f ∂ x i v j δ i j = v i ∂ f ∂ x i
\begin{align*}
w_{p} (v) &= \dfrac{\partial f}{\partial x_{i}}dx_{i} (v) \\
&= \dfrac{\partial f}{\partial x_{i}}dx_{i} \left( v_{j}\dfrac{\partial }{\partial x_{j}} \right) \\
&= \dfrac{\partial f}{\partial x_{i}} v_{j}\delta_{ij} \\
&= v_{i}\dfrac{\partial f}{\partial x_{i}}
\end{align*}
w p ( v ) = ∂ x i ∂ f d x i ( v ) = ∂ x i ∂ f d x i ( v j ∂ x j ∂ ) = ∂ x i ∂ f v j δ ij = v i ∂ x i ∂ f
Then, in this case, since R \mathbb{R} R ’s dimension is 1 1 1 anyway, the following holds true.
d f p ( v ) = [ v i ∂ f ∂ x i ] = v i ∂ f ∂ x i = ω p ( v )
df_{p}(v) = \begin{bmatrix} v_{i} \dfrac{\partial f}{\partial x_{i}}\end{bmatrix} = v_{i}\dfrac{\partial f}{\partial x_{i}} = \omega_{p}(v)
d f p ( v ) = [ v i ∂ x i ∂ f ] = v i ∂ x i ∂ f = ω p ( v )
Therefore, it can be understood that the 1 1 1 -form ω p \omega_{p} ω p on R n \mathbb{R}^{n} R n and the differential of the function defined on R n \mathbb{R}^{n} R n d f p df_{p} d f p are the same. This is the essence of representing the total differential d f df df of scalar functions in calculus.
d f = ∂ f ∂ x d x + ∂ f ∂ y d y + ∂ f ∂ z d z
df = \dfrac{\partial f}{\partial x}dx + \dfrac{\partial f}{\partial y}dy + \dfrac{\partial f}{\partial z}dz
df = ∂ x ∂ f d x + ∂ y ∂ f d y + ∂ z ∂ f d z
Examples If f ( x , y ) = x 2 + y 2 f(x,y) = x^{2} + y^{2} f ( x , y ) = x 2 + y 2 , then,
d f = ∂ f ∂ x d x + ∂ f ∂ y d y = 2 x d x + 2 y d y
df = \dfrac{\partial f}{\partial x}dx + \dfrac{\partial f}{\partial y}dy = 2xdx + 2ydy
df = ∂ x ∂ f d x + ∂ y ∂ f d y = 2 x d x + 2 y d y
If f ( x , y ) = e x y + 3 x f(x,y) = e^{xy} + 3x f ( x , y ) = e x y + 3 x , then,
d f = ( y e x y + 3 ) d x + x e x y d y
df = (ye^{xy} + 3)dx + xe^{xy}dy
df = ( y e x y + 3 ) d x + x e x y d y
See Also