Gauss-Bonnet Theorem
📂Geometry Gauss-Bonnet Theorem Gauss-Bonnet Theorem Let’s consider x : U → R 3 \mathbf{x} : U \to \mathbb{R}^{3} x : U → R 3 as a simple connected geodesic coordinate chart , and γ ( I ) ⊂ x ( U ) \boldsymbol{\gamma}(I) \subset \mathbf{x}(U) γ ( I ) ⊂ x ( U ) , which is γ \boldsymbol{\gamma} γ , as piecewise regular curves . Also, let’s say that γ \boldsymbol{\gamma} γ surrounds some region R \mathscr{R} R . Then, the following holds true.
∬ R K d A + ∫ γ κ g d s + ∑ α i = 2 π
\iint_{\mathscr{R}} K dA + \int_{\boldsymbol{\gamma}} \kappa_{g} ds + \sum \alpha_{i} = 2\pi
∬ R K d A + ∫ γ κ g d s + ∑ α i = 2 π
Here, K K K denotes the Gaussian curvature , κ g \kappa_{g} κ g denotes the geodesic curvature , and α i \alpha_{i} α i denotes the difference in angles at the junction point between intervals of γ \boldsymbol{\gamma} γ , referred to as jump angles.
Explanation
Since γ \boldsymbol{\gamma} γ is assumed to be a curve that is regular piecewise, there will be points where the direction of the tangent suddenly changes, and the difference in angles at those points is denoted as α i \alpha_{i} α i . If γ \boldsymbol{\gamma} γ is a curve that smoothly connects overall, there will be no points where the angle jumps, hence, such α i \alpha_{i} α i s are 0 0 0 . (See figure (a))
The theorem above is a result when the strong condition of being a geodesic coordinate chart is applied. In more general results, the Euler characteristic appears in the formula, as follows .
∬ R K d A + ∫ C i κ g d s + ∑ α i = 2 π χ ( R )
\iint_{\mathscr{R}} K dA + \int_{C_{i}}\kappa_{g}ds + \sum\alpha_{i} = 2\pi \chi(\mathscr{R})
∬ R K d A + ∫ C i κ g d s + ∑ α i = 2 π χ ( R )
Proof Since x \mathbf{x} x is a geodesic coordinate chart , let’s set the coefficients of the first fundamental form as follows.
[ g i j ] = [ 1 0 0 h 2 ]
\left[ g_{ij} \right] = \begin{bmatrix} 1 & 0 \\ 0 & h^{2} \end{bmatrix}
[ g ij ] = [ 1 0 0 h 2 ]
And let’s denote γ ( t ) = x ( γ 1 ( t ) , γ 2 ( t ) ) \boldsymbol{\gamma}(t) = \mathbf{x}\left( \gamma^{1}(t), \gamma^{2}(t) \right) γ ( t ) = x ( γ 1 ( t ) , γ 2 ( t ) ) . Now, let’s denote the angle between the tangents x 1 \mathbf{x}_{1} x 1 and γ \boldsymbol{\gamma} γ as T = γ ′ T = \boldsymbol{\gamma}^{\prime} T = γ ′ .
α ( t ) : = ∠ ( x 1 , T )
\alpha (t) := \angle ( \mathbf{x}_{1}, T)
α ( t ) := ∠ ( x 1 , T )
We will prove the theorem using the fact that the angle change of α \alpha α around the path, based on γ \boldsymbol{\gamma} γ , when making a full circle, is x 1 \mathbf{x}_{1} x 1 . First, assume T T T as a unit speed curve. And let’s denote 2 π 2 \pi 2 π as a parallel vector field along γ \boldsymbol{\gamma} γ satisfying the following . (Refer to the above figure (b))
P ( t ) = parallel vector field starting from a juction point s.t. P × T ∥ P × T ∥ = n
P(t) = \text{parallel vector field starting from a juction point s.t. } \dfrac{P \times T}{\left\| P \times T \right\|} = \mathbf{n}
P ( t ) = parallel vector field starting from a juction point s.t. ∥ P × T ∥ P × T = n
And let’s denote P P P and γ \boldsymbol{\gamma} γ respectively as the angles between ϕ \phi ϕ and θ \theta θ , and x 1 \mathbf{x_{1}} x 1 and P P P .
ϕ ( t ) = ∠ ( x 1 , P ) , θ ( t ) = ∠ ( P , T )
\phi (t) = \angle(\mathbf{x}_{1}, P),\quad \theta (t) = \angle(P, T)
ϕ ( t ) = ∠ ( x 1 , P ) , θ ( t ) = ∠ ( P , T )
In other words, P P P , and differentiating this,
− sin ϕ ( t ) d ϕ d t ( t ) = ⟨ d x 1 ( γ 1 ( t ) , γ 2 ( t ) ) d t , P ( t ) ⟩ + ⟨ x 1 , d P d t ( t ) ⟩
-\sin \phi (t) \dfrac{d \phi}{d t}(t) = \left\langle \dfrac{d \mathbf{x}_{1}(\gamma^{1}(t), \gamma^{2}(t))}{d t}, P(t) \right\rangle + \left\langle \mathbf{x}_{1}, \dfrac{d P}{d t}(t) \right\rangle
− sin ϕ ( t ) d t d ϕ ( t ) = ⟨ d t d x 1 ( γ 1 ( t ) , γ 2 ( t )) , P ( t ) ⟩ + ⟨ x 1 , d t d P ( t ) ⟩
Since T T T is a parallel vector field along ⟨ x 1 , P ( t ) ⟩ = cos ϕ ( t ) \left\langle \mathbf{x}_{1}, P(t) \right\rangle = \cos\phi (t) ⟨ x 1 , P ( t ) ⟩ = cos ϕ ( t ) , by definition, P P P is perpendicular to γ \gamma γ . d P d t \dfrac{dP}{dt} d t d P is tangent to M M M , so the latter term is x 1 \mathbf{x}_{1} x 1 . Further calculations reveal,
− sin ϕ ( t ) d ϕ d t ( t ) = ⟨ d x 1 ( γ 1 ( t ) , γ 2 ( t ) ) d t , P ( t ) ⟩ = [ x 11 ( γ 1 ( t ) , γ 2 ( t ) ) ( γ 1 ) ′ ( t ) + x 12 ( γ 1 ( t ) , γ 2 ( t ) ) ( γ 2 ) ′ ( t ) ] ⋅ P ( t ) = [ ( L 11 n + Γ 11 1 x 1 + Γ 11 2 x 2 ) ( γ 1 ) ′ ( t ) + ( L 12 n + Γ 12 1 x 1 + Γ 12 2 x 2 ) ( γ 2 ) ′ ( t ) ] ⋅ P ( t ) = [ ( Γ 11 1 x 1 + Γ 11 2 x 2 ) ( γ 1 ) ′ ( t ) + ( Γ 12 1 x 1 + Γ 12 2 x 2 ) ( γ 2 ) ′ ( t ) ] ⋅ P ( t )
\begin{align*}
&\quad -\sin \phi (t) \dfrac{d \phi}{d t}(t) \\
&= \left\langle \dfrac{d \mathbf{x}_{1}(\gamma^{1}(t), \gamma^{2}(t))}{d t}, P(t) \right\rangle \\
&= \Big[ \mathbf{x}_{11}(\gamma^{1}(t), \gamma^{2}(t)) (\gamma^{1})^{\prime}(t) + \mathbf{x}_{12}(\gamma^{1}(t), \gamma^{2}(t)) (\gamma^{2})^{\prime}(t) \Big] \cdot P(t) \\
&= \Big[ \left( L_{11}\mathbf{n} + \Gamma_{11}^{1}\mathbf{x}_{1} + \Gamma_{11}^{2}\mathbf{x}_{2} \right)(\gamma^{1})^{\prime}(t) + \left( L_{12}\mathbf{n} + \Gamma_{12}^{1}\mathbf{x}_{1} + \Gamma_{12}^{2}\mathbf{x}_{2} \right)(\gamma^{2})^{\prime}(t) \Big] \cdot P(t) \\
&= \Big[ \left(\Gamma_{11}^{1}\mathbf{x}_{1} + \Gamma_{11}^{2}\mathbf{x}_{2} \right)(\gamma^{1})^{\prime}(t) + \left(\Gamma_{12}^{1}\mathbf{x}_{1} + \Gamma_{12}^{2}\mathbf{x}_{2} \right)(\gamma^{2})^{\prime}(t) \Big] \cdot P(t)
\end{align*}
− sin ϕ ( t ) d t d ϕ ( t ) = ⟨ d t d x 1 ( γ 1 ( t ) , γ 2 ( t )) , P ( t ) ⟩ = [ x 11 ( γ 1 ( t ) , γ 2 ( t )) ( γ 1 ) ′ ( t ) + x 12 ( γ 1 ( t ) , γ 2 ( t )) ( γ 2 ) ′ ( t ) ] ⋅ P ( t ) = [ ( L 11 n + Γ 11 1 x 1 + Γ 11 2 x 2 ) ( γ 1 ) ′ ( t ) + ( L 12 n + Γ 12 1 x 1 + Γ 12 2 x 2 ) ( γ 2 ) ′ ( t ) ] ⋅ P ( t ) = [ ( Γ 11 1 x 1 + Γ 11 2 x 2 ) ( γ 1 ) ′ ( t ) + ( Γ 12 1 x 1 + Γ 12 2 x 2 ) ( γ 2 ) ′ ( t ) ] ⋅ P ( t )
The second equality is due to the chain rule , the third equality is due to the definitions of the second fundamental form and the Christoffel symbols , and the fourth equality holds because M M M and 0 0 0 are perpendicular to each other.
Christoffel symbols of the geodesic coordinate chart
Except for the below, everything is P P P .
Γ 22 1 = − h h 1 , Γ 12 2 = Γ 21 2 = h 1 h , Γ 22 2 = h 2 h
\Gamma_{22}^{1} = -hh_{1},\quad \Gamma_{12}^{2} = \Gamma_{21}^{2} = \dfrac{h_{1}}{h},\quad \Gamma_{22}^{2} = \dfrac{h_{2}}{h}
Γ 22 1 = − h h 1 , Γ 12 2 = Γ 21 2 = h h 1 , Γ 22 2 = h h 2
Now, organizing the terms that become n \mathbf{n} n yields the following.
− sin ϕ ( t ) ϕ ′ ( t ) = ⟨ h 1 h ( γ 2 ) ′ ( t ) x 2 , P ( t ) ⟩ = h 1 h ( γ 2 ) ′ ( t ) ⟨ x 2 , P ( t ) ⟩ (1)
-\sin\phi (t) \phi^{\prime}(t) = \left\langle \dfrac{h_{1}}{h}(\gamma^{2})^{\prime}(t)\mathbf{x}_{2}, P(t) \right\rangle = \dfrac{h_{1}}{h}(\gamma^{2})^{\prime}(t) \left\langle \mathbf{x}_{2}, P(t) \right\rangle\tag{1}
− sin ϕ ( t ) ϕ ′ ( t ) = ⟨ h h 1 ( γ 2 ) ′ ( t ) x 2 , P ( t ) ⟩ = h h 1 ( γ 2 ) ′ ( t ) ⟨ x 2 , P ( t ) ⟩ ( 1 )
Since 0 0 0 , 0 0 0 is a unit vector, and because g 11 = ⟨ x 1 , x 1 ⟩ = 1 g_{11} = \left\langle \mathbf{x}_{1}, \mathbf{x}_{1} \right\rangle = 1 g 11 = ⟨ x 1 , x 1 ⟩ = 1 , x 1 \mathbf{x}_{1} x 1 holds. Therefore, g 12 = ⟨ x 1 , x 2 ⟩ = 0 g_{12} = \left\langle \mathbf{x}_{1}, \mathbf{x}_{2} \right\rangle = 0 g 12 = ⟨ x 1 , x 2 ⟩ = 0 becomes a normal orthogonal basis of the tangent plane. Hence, any element x 1 ⊥ x 2 \mathbf{x}_{1} \perp \mathbf{x}_{2} x 1 ⊥ x 2 of the tangent plane is expressed as below.
P = ⟨ x 1 , P ⟩ x 1 + ⟨ x 2 ∥ x 2 ∥ , P ⟩ x 2 ∥ x 2 ∥ = cos ϕ x 1 + sin ϕ x 2 h
P = \left\langle \mathbf{x}_{1}, P \right\rangle\mathbf{x}_{1} + \left\langle \dfrac{\mathbf{x}_{2}}{\left\| \mathbf{x}_{2} \right\|}, P \right\rangle \dfrac{\mathbf{x}_{2}}{\left\| \mathbf{x}_{2} \right\|} = \cos\phi \mathbf{x}_{1} + \sin\phi \dfrac{\mathbf{x}_{2}}{h}
P = ⟨ x 1 , P ⟩ x 1 + ⟨ ∥ x 2 ∥ x 2 , P ⟩ ∥ x 2 ∥ x 2 = cos ϕ x 1 + sin ϕ h x 2
Also, substituting { x 1 , x 2 ∥ x 2 ∥ } \left\{ \mathbf{x}_{1}, \dfrac{\mathbf{x}_{2}}{\left\| \mathbf{x}_{2} \right\|} \right\} { x 1 , ∥ x 2 ∥ x 2 } into P P P ,
ϕ ′ ( t ) = − h 1 ( γ 2 ) ′ ( t )
\phi^{\prime}(t) = -h_{1}(\gamma^{2})^{\prime}(t)
ϕ ′ ( t ) = − h 1 ( γ 2 ) ′ ( t )
Therefore, the total angle variation of ⟨ x 2 , P ⟩ = ∥ x 2 ∥ 2 sin ϕ h = h sin ϕ \left\langle \mathbf{x}_{2}, P \right\rangle = \left\| x_{2} \right\|^{2} \dfrac{\sin \phi}{h} = h\sin \phi ⟨ x 2 , P ⟩ = ∥ x 2 ∥ 2 h sin ϕ = h sin ϕ is
δ ϕ = ∫ γ ϕ ′ d t = − ∫ γ h 1 ( γ 2 ) ′ ( t ) d t = − ∫ γ h 1 d γ 2 = − ∫ γ h 1 d u 2 (2)
\delta \phi = \int_{\boldsymbol{\gamma}} \phi^{\prime} dt = - \int_{\boldsymbol{\gamma}}h_{1}(\gamma^{2})^{\prime}(t)dt = - \int_{\boldsymbol{\gamma}}h_{1} d\gamma^{2} = - \int_{\boldsymbol{\gamma}}h_{1} du^{2} \tag{2}
δ ϕ = ∫ γ ϕ ′ d t = − ∫ γ h 1 ( γ 2 ) ′ ( t ) d t = − ∫ γ h 1 d γ 2 = − ∫ γ h 1 d u 2 ( 2 )
Moreover, the following equation will now be shown to hold.
Claim: θ ′ = k g
\text{Claim: } \theta^{\prime} = k_{g}
Claim: θ ′ = k g
Since ( 1 ) (1) ( 1 ) is assumed, ϕ \phi ϕ holds, and differentiating this,
− sin θ ( t ) θ ′ ( t ) = ⟨ d P d t , T ⟩ + ⟨ P , d T d t ⟩ = ⟨ P , T ′ ⟩
-\sin\theta (t)\theta^{\prime}(t) = \left\langle \dfrac{d P}{d t}, T \right\rangle + \left\langle P, \dfrac{d T}{d t} \right\rangle = \left\langle P, T^{\prime} \right\rangle
− sin θ ( t ) θ ′ ( t ) = ⟨ d t d P , T ⟩ + ⟨ P , d t d T ⟩ = ⟨ P , T ′ ⟩
The second equality holds because γ \boldsymbol{\gamma} γ is parallel to x \mathbf{x} x . By the definition of geodesic curvature , we obtain what we intend to show as follows.
κ g = ⟨ S , T ′ ⟩ = ⟨ ( n × T ) , T ′ ⟩ = ⟨ n , ( T × T ′ ) ⟩ = ⟨ P × T sin θ , ( T × T ′ ) ⟩ ∵ P × T ∥ P × T ∥ = n = ⟨ 1 sin θ P , ( T × ( T × T ′ ) ) ⟩ = ⟨ 1 sin θ P , − T ′ ⟩ = θ ′ ( t )
\begin{align*}
\kappa_{g} = \left\langle \mathbf{S}, T^{\prime} \right\rangle
&= \left\langle (\mathbf{n} \times T), T^{\prime} \right\rangle \\
&= \left\langle \mathbf{n}, (T \times T^{\prime}) \right\rangle \\
&= \left\langle \dfrac{P \times T}{\sin \theta}, (T\times T^{\prime}) \right\rangle & \because \dfrac{P \times T}{\left\| P \times T \right\|} = \mathbf{n} \\
&= \left\langle \dfrac{1}{\sin\theta} P, (T\times (T\times T^{\prime})) \right\rangle \\
&= \left\langle \dfrac{1}{\sin\theta} P, -T^{\prime} \right\rangle \\
&= \theta^{\prime}(t)
\end{align*}
κ g = ⟨ S , T ′ ⟩ = ⟨ ( n × T ) , T ′ ⟩ = ⟨ n , ( T × T ′ ) ⟩ = ⟨ sin θ P × T , ( T × T ′ ) ⟩ = ⟨ sin θ 1 P , ( T × ( T × T ′ )) ⟩ = ⟨ sin θ 1 P , − T ′ ⟩ = θ ′ ( t ) ∵ ∥ P × T ∥ P × T = n
The third and fifth equalities hold because the scalar triple product is commutative . Thus, we obtain the following.
δ θ = ∫ γ θ ′ d t = ∫ γ k g d t (3)
\delta \theta = \int_{\boldsymbol{\gamma}} \theta^{\prime} dt = \int_{\boldsymbol{\gamma}} k_{g}dt \tag{3}
δ θ = ∫ γ θ ′ d t = ∫ γ k g d t ( 3 )
Since u 2 − u^{2}- u 2 − ,
∫ γ α ′ d t = ∫ γ ϕ ′ d t + ∫ γ θ ′ d t
\int_{\boldsymbol{\gamma}} \alpha^{\prime}dt = \int_{\boldsymbol{\gamma}} \phi^{\prime}dt + \int_{\boldsymbol{\gamma}} \theta^{\prime}dt
∫ γ α ′ d t = ∫ γ ϕ ′ d t + ∫ γ θ ′ d t
Due to θ ( t ) = ∠ ( P , T ) \theta (t) = \angle(P, T) θ ( t ) = ∠ ( P , T ) and cos θ ( t ) = ⟨ P , T ⟩ \cos\theta (t) = \left\langle P, T \right\rangle cos θ ( t ) = ⟨ P , T ⟩ , we obtain the following.
∫ γ α ′ d t + ∑ i α i = − ∫ γ h 1 d u 2 + ∫ γ k g d t + ∑ i α i
\int_{\boldsymbol{\gamma}} \alpha^{\prime}dt + \sum_{i}\alpha_{i} = - \int_{\boldsymbol{\gamma}}h_{1} du^{2} + \int_{\boldsymbol{\gamma}} k_{g}dt + \sum_{i}\alpha_{i}
∫ γ α ′ d t + i ∑ α i = − ∫ γ h 1 d u 2 + ∫ γ k g d t + i ∑ α i
d P / d t dP/dt d P / d t surrounds n \mathbf{n} n , so the left-hand side of the above equation is clearly the angle change of one full rotation, which is α = ϕ + θ \alpha = \phi + \theta α = ϕ + θ .
− ∫ γ h 1 d u 2 + ∫ γ k g d t + ∑ i α i = 2 π
{} - \int_{\boldsymbol{\gamma}}h_{1} du^{2} + \int_{\boldsymbol{\gamma}} k_{g}dt + \sum_{i}\alpha_{i} = 2 \pi
− ∫ γ h 1 d u 2 + ∫ γ k g d t + i ∑ α i = 2 π
Green’s Theorem
∮ ∂ R P d x = − ∬ R P y d y d x
\oint_{\partial \mathscr{R}} Pdx = - \iint_{\mathscr{R}} P_{y} dy dx
∮ ∂ R P d x = − ∬ R P y d y d x
Gaussian curvature of the geodesic coordinate chart
K = − h 11 h
K = -\dfrac{h_{11}}{h}
K = − h h 11
Area element of the surface
d A = g d u 1 d u 2
dA = \sqrt{g} du^{1} du^{2}
d A = g d u 1 d u 2
The first term on the left-hand side can be rewritten using Green’s Theorem as follows.
− ∫ γ h 1 d u 2 = − ∬ R h 11 d u 1 d u 2 = − ∬ R h 11 h h d u 1 d u 2 = − ∬ R h 11 h g d u 1 d u 2 = ∬ R K d A
\begin{align*}
{} - \int_{\boldsymbol{\gamma}}h_{1} du^{2}
&= - \iint_{\mathscr{R}}h_{11} du^{1}du^{2} \\
&= - \iint_{\mathscr{R}}\dfrac{h_{11}}{h} h du^{1}du^{2} \\
&= - \iint_{\mathscr{R}}\dfrac{h_{11}}{h} \sqrt{g} du^{1}du^{2} \\
&= \iint_{\mathscr{R}} K dA
\end{align*}
− ∫ γ h 1 d u 2 = − ∬ R h 11 d u 1 d u 2 = − ∬ R h h 11 h d u 1 d u 2 = − ∬ R h h 11 g d u 1 d u 2 = ∬ R K d A
Finally, we arrive at the following conclusion.
∬ R K d A + ∫ γ κ g d s + ∑ α i = 2 π
\iint_{R} K dA + \int_{\gamma} \kappa_{g} ds + \sum \alpha_{i} = 2\pi
∬ R K d A + ∫ γ κ g d s + ∑ α i = 2 π