logo

n-Dimensional Radon Transform 📂Tomography

n-Dimensional Radon Transform

Definition1

For sR1s \in \mathbb{R}^{1}, θSn1\boldsymbol{\theta} \in S^{n-1}, the Radon transform R:L2(Rn)L2(Zn)\mathcal{R} : L^{2}(\mathbb{R}^{n}) \to L^{2}(Z_{n}) is defined as follows.

Rf(s,θ)=xθ=sf(x)dx \mathcal{R} f (s, \boldsymbol{\theta}) = \int\limits_{\mathbf{x} \cdot \boldsymbol{\theta} = s} f(\mathbf{x}) d \mathbf{x}

Here, Zn:=R1×Sn1Z_{n} := \mathbb{R}^{1} \times S^{n-1} is a unit cylinder in n+1n+1 dimensions.

Description

The geometric meaning of Rf(s,θ)\mathcal{R} f (s, \boldsymbol{\theta}) is to integrate over all points that are ss away from the origin and perpendicular to θ\boldsymbol{\theta}.

x(θ)=s    xθ=sxRn \mathbf{x} \cdot (-\boldsymbol{\theta}) = -s \iff \mathbf{x} \cdot \boldsymbol{\theta} = s\quad \forall \mathbf{x} \in \mathbb{R}^{n}

Since the above equation holds, the Radon transform is an even function.

Rf(s,θ)=Rf(s,θ) \mathcal{R}f(-s, -\boldsymbol{\theta}) = \mathcal{R}f(s, \boldsymbol{\theta})

Alternative Expression

For a fixed θ\boldsymbol{\theta},

Rf(s,θ)=Rθf(s) \mathcal{R} f (s, \boldsymbol{\theta}) = \mathcal{R}_{\boldsymbol{\theta}}f (s)

Let θ:={u:uθ=0}\boldsymbol{\theta} ^{\perp} := \left\{ \mathbf{u} : \mathbf{u} \cdot \boldsymbol{\theta} = 0 \right\}. Then,

Rf(s,θ)=θf(sθ+u)du \mathcal{R} f (s, \boldsymbol{\theta}) = \int\limits_{\boldsymbol{\theta}^{\perp}} f( s \boldsymbol{\theta} + \mathbf{u}) d \mathbf{u}

Regarding the Dirac delta function δ\delta,

Rf(s,θ)=Rnf(x)δ(xθs)dx \mathcal{R} f (s, \boldsymbol{\theta}) = \int\limits_{\mathbb{R}^{n}} f( \mathbf{x} ) \delta ( \mathbf{x} \cdot \boldsymbol{\theta} - s) d \mathbf{x}

Theorem

Let fL1(R)f \in L^{1}(\mathbb{R}). Then Rθf(s)L1(R)\mathcal{R}_{\boldsymbol{\theta}}f(s) \in L^{1}(\mathbb{R}), and the following holds.

Rθf(s)ds=Rnf(x)dx \int\limits_{-\infty}^{\infty} \mathcal{R}_{\boldsymbol{\theta}}f(s) ds = \int\limits_{\mathbb{R}^{n}}f(\mathbf{x})d \mathbf{x}

Proof

Rθf(s)\mathcal{R}_{\boldsymbol{\theta}}f(s) is integrated over a plane that is tt away from the origin and perpendicular to θ\boldsymbol{\theta}. Integrating this over all sRs \in \mathbb{R} is the same as integrating ff over all points of Rn\mathbb{R}^{n}. Therefore,

Rθf(s)ds=Rnf(x)dx< \int\limits_{-\infty}^{\infty} \mathcal{R}_{\boldsymbol{\theta}}f(s) ds = \int\limits_{\mathbb{R}^{n}}f(\mathbf{x})d \mathbf{x} \lt \infty


  1. Boris Rubin, Introduction to Radon Transforms With Elements of Fractional Calculus and Harmonic Analysis (2015), p127-131 ↩︎