logo

Two Rotational Surfaces with Positive Curvature are Locally Isometric 📂Geometry

Two Rotational Surfaces with Positive Curvature are Locally Isometric

Theorem1

Let M1M_{1}, M2M_{2} be the unit speed curves α1\boldsymbol{\alpha}_{1}, α2\boldsymbol{\alpha}_{2} of the surfaces of revolution respectively. If M1M_{1}, M2M_{2} have a constant curvature a2>0a^{2} \gt 0, then M1M_{1}, M2M_{2} are locally isometric.

Proof

Lemma

The following two propositions are equivalent:

  • The two surfaces MM and NN are locally isometric.

  • For all pMp \in M, there exist two coordinate patch mappings x:UM\mathbf{x} : U \to M, y:UN\mathbf{y} : U \to N (px(U))(p \in \mathbf{x}(U)) such that open set UR2U \subset \mathbb{R}^{2} and the coefficients of the first fundamental form gijg_{ij} are the same.

According to the lemma above, it’s sufficient to prove that all surfaces of revolution with a curvature of K=a2K = a^{2} can have the same metric matrix. Therefore, the following claim is to be proved.

Claim: For all surfaces of revolution with a curvature of K=a2K = a^{2}, there exists a coordinate patch mapping that has [gij]=[1001a2cos2as]\left[ g_{ij} \right] = \begin{bmatrix} 1 & 0 \\ 0 & \dfrac{1}{a^{2}}\cos^{2}as \end{bmatrix} as its metric coefficient matrix.

The coordinate patch mapping of the surface of revolution generated by the unit speed curve α(s)=(r(s),z(s))\boldsymbol{\alpha}(s) = (r(s), z(s)) is x(s,θ)=(r(s)cosθ,r(s)sinθ,z(s))\mathbf{x}(s, \theta) = \left( r(s)\cos\theta, r(s)\sin\theta, z(s) \right). The metric of the coordinate system (s,θ)(s, \theta) for a surface of revolution with a curvature of K=a2>0K = a^{2} > 0 is as follows.

[gij]=[100A2cos2(as)] \begin{bmatrix} g_{ij} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & A^{2} \cos^{2}(as) \end{bmatrix}

Let’s consider a new coordinate system (s,ϕ),ϕ=aAθ(s, \phi), \phi = a A \theta. If f:(s,ϕ)(s,θ)f : (s, \phi) \mapsto (s, \theta) is defined, then the Jacobian of ff is as follows.

J=[sssϕθsθϕ]=[1001aA] J = \begin{bmatrix} \dfrac{\partial s}{\partial s} & \dfrac{\partial s}{\partial \phi} \\[1em] \dfrac{\partial \theta}{\partial s} & \dfrac{\partial \theta}{\partial \phi} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & \dfrac{1}{aA} \end{bmatrix}

Hence, if the metric matrix of the new coordinate system is denoted as [gαβ]\begin{bmatrix}\overline{g}_{\alpha \beta}\end{bmatrix}, according to the relationship between coordinate transformation and metric,

[gαβ]=Jt[gij]J=[1001aA][100A2cos2(as)][1001aA]=[1001a2cos2(as)] \begin{align*} \begin{bmatrix}\overline{g}_{\alpha \beta}\end{bmatrix} &= J^{t} \begin{bmatrix} g_{ij} \end{bmatrix} J \\ &= \begin{bmatrix} 1 & 0 \\ 0 & \dfrac{1}{aA} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & A^{2} \cos^{2}(as) \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & \dfrac{1}{aA} \end{bmatrix} \\ &= \begin{bmatrix} 1 & 0 \\ 0 & \dfrac{1}{a^{2}}\cos^{2}(as) \end{bmatrix} \end{align*}


  1. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p155-156 ↩︎