logo

Gauss's Great Theorem 📂Geometry

Gauss's Great Theorem

정리[^1]

Gaussian curvature KK is intrinsic, and the following holds.

K=lR121lgl2g K = \dfrac{\sum\limits_{l} R_{121}^{l}g_{l2}}{g}

Here, RijklR_{ijk}^{l} are the coefficients of the Riemann curvature tensor, and gg and gijg_{ij} are the coefficients of the Riemann metric.

Corollary

Since Rijkl=ΓiklujΓijluk+p(ΓikpΓpjlΓijpΓpkl) for R_{ijk}^{l} = \dfrac{\partial \Gamma_{ik}^{l}}{\partial u^{j}} - \dfrac{\partial \Gamma_{ij}^{l}}{\partial u^{k}} + \sum_{p} \left( \Gamma_{ik}^{p} \Gamma_{pj}^{l} - \Gamma_{ij}^{p}\Gamma_{pk}^{l}\right) \text{ for }, the following holds.

K=1g(Γ111u2Γ121u1+Γ111Γ121Γ121Γ111+Γ112Γ221Γ122Γ211)(Γ112u2Γ122u1+Γ111Γ122Γ121Γ112+Γ112Γ222Γ122Γ212) K = \dfrac{1}{g}\left( \dfrac{\partial \Gamma_{11}^{1}}{\partial u^{2}} - \dfrac{\partial \Gamma_{12}^{1}}{\partial u^{1}} + \Gamma_{11}^{1} \Gamma_{12}^{1} - \Gamma_{12}^{1}\Gamma_{11}^{1} + \Gamma_{11}^{2} \Gamma_{22}^{1} - \Gamma_{12}^{2}\Gamma_{21}^{1}\right) \left( \dfrac{\partial \Gamma_{11}^{2}}{\partial u^{2}} - \dfrac{\partial \Gamma_{12}^{2}}{\partial u^{1}} + \Gamma_{11}^{1} \Gamma_{12}^{2} - \Gamma_{12}^{1}\Gamma_{11}^{2} + \Gamma_{11}^{2} \Gamma_{22}^{2} - \Gamma_{12}^{2}\Gamma_{21}^{2}\right)

Description

This is called Gauss’s Theorem Egregium. Theorem Egregium translates to great theorem or outstanding theorem, and this term was used by Gauss himself in his Latin papers1.

Gauss used the term egregium because Gaussian curvature KK is defined in terms of the product of principal curvatures, and principal curvatures are derived from the Weingarten map, which measures the rate of change of the unit normal n\mathbf{n}. Thus, while KK is defined in a very extrinsic way, it is in fact intrinsic, which is why Gauss named it so.

Proof

By the Gauss equations, Rijkl=LikLjlLijLklR_{ijk}^{l} = L_{ik}L_{j}^{l} - L_{ij}L_{k}^{l} holds. Therefore, we obtain

lRijklglm=l(LikLjlLijLkl)glm=l(LikLjlglmLijLklglm)=LiklLjlglmLijlLklglm \begin{align*} \sum\limits_{l} R_{ijk}^{l} g_{lm} &= \sum\limits_{l} ( L_{ik}L_{j}^{l} - L_{ij}L_{k}^{l} ) g_{lm} \\ &= \sum\limits_{l} ( L_{ik}L_{j}^{l}g_{lm} - L_{ij}L_{k}^{l}g_{lm} ) \\ &= L_{ik}\sum\limits_{l}L_{j}^{l}g_{lm} - L_{ij}\sum\limits_{l}L_{k}^{l}g_{lm} \end{align*}

Here, glmg_{lm} are the coefficients of the first fundamental form. Then, since Ljl=iLijgilL_{j}^{l} = \sum\limits_{i} L_{ij}g^{il} and kgikgkj=δij\sum\limits_{k}g_{ik}g^{kj} = \delta_{i}^{j}, we obtain

Ljl=iLijgil    lLjlglm=liLijgilglm=iLijδmi=Lmj \begin{align*} && L_{j}^{l} &= \sum_{i} L_{ij}g^{il} \\ \implies && \sum\limits_{l} L_{j}^{l}g_{lm} &= \sum\limits_{l} \sum\limits_{i} L_{ij}g^{il}g_{lm} \\ && &= \sum\limits_{i} L_{ij}\delta_{m}^{i} \\ && &= L_{mj} \end{align*}

Substituting this into the above equation,

lRijklglm=LikLmjLijLmk \sum\limits_{l} R_{ijk}^{l} g_{lm} = L_{ik}L_{mj} - L_{ij}L_{mk}

Let i=k=1i = k = 1 and j=m=2j = m = 2, then

lR121lgl2=L22L22L12L12=det([Lij])=det([(Ljk)(gik)])=det([Ljk])det([gik])=Kg \begin{align*} \sum\limits_{l} R_{121}^{l}g_{l2} &= L_{22}L_{22} - L_{12}L_{12} = \det ([L_{ij}]) = \det ([(L_{j}^{k}) (g_{ik})]) \\ &= \det ([L_{j}^{k}]) \det([g_{ik}]) = Kg \end{align*}

Therefore,

K=lR121lgl2g K = \dfrac{\sum\limits_{l} R_{121}^{l}g_{l2}}{g}

Since gg is intrinsic and RijklR_{ijk}^{l} is also intrinsic, KK is intrinsic.