logo

Riemann Curvature Tensor, Gauss Equation, and Codazzi-Mainardi Equation in Differential Geometry 📂Geometry

Riemann Curvature Tensor, Gauss Equation, and Codazzi-Mainardi Equation in Differential Geometry

Definition1

The coefficients of the Riemannian curvature tensor RijklR_{ijk}^{l} are defined as follows.

Rijkl=ΓiklujΓijluk+p(ΓikpΓpjlΓijpΓpkl) for 1i,j,k,l2 R_{ijk}^{l} = \dfrac{\partial \Gamma_{ik}^{l}}{\partial u^{j}} - \dfrac{\partial \Gamma_{ij}^{l}}{\partial u^{k}} + \sum_{p} \left( \Gamma_{ik}^{p} \Gamma_{pj}^{l} - \Gamma_{ij}^{p}\Gamma_{pk}^{l}\right) \text{ for } 1 \le i,j,k,l \le 2

Here, Γijk\Gamma_{ij}^{k} is the Christoffel symbol.

Explanation

Since Christoffel symbols are intrinsic, the Riemann curvature tensor is also intrinsic.

The so-called coefficients that appear in differential geometry do not depend on the coordinate system. We call these entities tensors.

The Gauss equation provides an extrinsic expression of RijklR_{ijk}^{l} from the perspective of the second fundamental form and the Weingarten map.

Theorems

  • Gauss’s Equations

Rijkl=LikLjlLijLkl R_{ijk}^{l} = L_{ik}L_{j}^{l} - L_{ij}L_{k}^{l}

  • Codazzi-Mainardi Equations

LijukLikuj=l(ΓiklLljΓijlLlk) \dfrac{\partial L_{ij}}{\partial u^{k}_{}} - \dfrac{\partial L_{ik}}{\partial u^{j}} = \sum\limits_{l} \left( \Gamma_{ik}^{l}L_{lj} - \Gamma_{ij}^{l}L_{lk} \right)

Here, LjiL_{j}^{i} is a component of the matrix representation of the Weingarten map.

Proof

Both equations are proved simultaneously. Let x:UR3\mathbf{x} : U \to \R^{3} be a coordinate patch mapping. Let (u1,u2)(u^{1}, u^{2}) be the coordinates of UU.

Gauss’s Formula

xij=Lijn+l=12Γijlxl \mathbf{x}_{ij} = L_{ij} \mathbf{n} + \sum \limits_{l=1}^{2} \Gamma_{ij}^{l} \mathbf{x}_{l}

First, by Gauss’s formula, we obtain the following.

xijk=uk(Lijn+l=12Γijlxl)=Lijukn+Lijnk+lΓijlukxl+lΓijlxlk \begin{align*} \mathbf{x}_{i j k} &= \dfrac{\partial}{\partial u^{k}}\left( L_{ij} \mathbf{n} + \sum \limits_{l=1}^{2} \Gamma_{ij}^{l} \mathbf{x}_{l} \right) \\ &= \frac{\partial L_{ij}}{\partial u^{k}}\mathbf{n} + L_{i j} \mathbf{n}_{k}+\sum\limits_{l} \frac{\partial \Gamma_{i j}^{l}}{\partial u^{k}} \mathbf{x}_{l}+\sum\limits_{l}\Gamma_{i j}^{l} \mathbf{x}_{l k} \end{align*}

Here, since nk=xkn=L(xk)=lLklxl\mathbf{n}_{k} = \mathbf{x}_{k}\mathbf{n} = - L(\mathbf{x}_{k}) = -\sum\limits_{l}L_{k}^{l}\mathbf{x}_{l}, the second term is Lijnk=lLijLklxlL_{ij}\mathbf{n}_{k} = -\sum\limits_{l} L_{i j} L_{k}^{l} \mathbf{x}_{l}. Also, applying Gauss’s formula to the fourth term again,

lΓijlxlk=lΓijlLlkn+l,mΓijlΓlkmxm \sum\limits_{l} \Gamma_{ij}^{l} \mathbf{x}_{l k} = \sum\limits_{l} \Gamma_{i j}^{l}L_{lk} \mathbf{n} + \sum\limits_{l,m}\Gamma_{i j}^{l}\Gamma_{lk}^{m} \mathbf{x}_{m}

Substituting this, we obtain the following.

xijk=LijuknlLijLklxl+lΓijlukxl+lΓijlLlkn+l,mΓijlΓlkmxm=LijuknlLijLklxl+lΓijlukxl+lΓijlLlkn+p,lΓijpΓpklxl=(Lijuk+lΓijlLlk)n+l(ΓijlukLijLkl+pΓijpΓpkl)xl \begin{align*} \mathbf{x}_{i j k} &= \frac{\partial L_{ij}}{\partial u^{k}}\mathbf{n} -\sum\limits_{l} L_{i j} L_{k}^{l} \mathbf{x}_{l} + \sum\limits_{l} \frac{\partial \Gamma_{i j}^{l}}{\partial u^{k}} \mathbf{x}_{l} + \sum\limits_{l} \Gamma_{i j}^{l}L_{lk} \mathbf{n} + \sum\limits_{l,m}\Gamma_{i j}^{l}\Gamma_{lk}^{m} \mathbf{x}_{m} \\ &= \frac{\partial L_{ij}}{\partial u^{k}}\mathbf{n} -\sum\limits_{l} L_{i j} L_{k}^{l} \mathbf{x}_{l} + \sum\limits_{l} \frac{\partial \Gamma_{i j}^{l}}{\partial u^{k}} \mathbf{x}_{l} + \sum\limits_{l} \Gamma_{i j}^{l}L_{lk} \mathbf{n} + \sum\limits_{p,l}\Gamma_{i j}^{p}\Gamma_{pk}^{l} \mathbf{x}_{l} \\ &= \left( \frac{\partial L_{ij}}{\partial u^{k}} + \sum\limits_{l} \Gamma_{i j}^{l}L_{lk} \right)\mathbf{n} + \sum\limits_{l} \left(\frac{\partial \Gamma_{i j}^{l}}{\partial u^{k}} - L_{i j} L_{k}^{l} + \sum\limits_{p}\Gamma_{i j}^{p}\Gamma_{pk}^{l} \right)\mathbf{x}_{l} \end{align*}

l,ml,m is a dummy index, so we change the index of the last term to (l,m)(p,l)(l,m) \to (p,l) and grouped the terms. Similarly, we obtain the following.

xikj=(Likuj+lΓiklLlj)n+l(ΓiklujLikLjl+pΓikpΓpjl)xl \mathbf{x}_{ikj} = \left( \frac{\partial L_{ik}}{\partial u^{j}} + \sum\limits_{l} \Gamma_{i k}^{l}L_{lj} \right)\mathbf{n} + \sum\limits_{l} \left(\frac{\partial \Gamma_{i k}^{l}}{\partial u^{j}} - L_{i k} L_{j}^{l} + \sum\limits_{p}\Gamma_{i k}^{p}\Gamma_{pj}^{l} \right)\mathbf{x}_{l}

Assuming the coordinate patch mapping x\mathbf{x} is sufficiently differentiable,

xijk=3xukujui=3xujukui=xikj \mathbf{x}_{i j k}=\frac{\partial^{3} \mathbf{x}}{\partial u^{k} \partial u^{j} \partial u^{i}}=\frac{\partial^{3} \mathbf{x}}{\partial u^{j} \partial u^{k} \partial u^{i}}=\mathbf{x}_{i k j}

{x1,x2,n}\left\{ \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{n} \right\} is the basis of R3\mathbb{R}^{3}, so each component of xijk\mathbf{x}_{ijk} and xikj\mathbf{x}_{ikj} must be the same. Therefore, we obtain the following.

Lijuk+lΓijlLlk=Likuj+lΓiklLlj    LijukLikuj=l(ΓiklLljΓijlLlk) \begin{align*} && \frac{\partial L_{ij}}{\partial u^{k}} + \sum\limits_{l} \Gamma_{i j}^{l}L_{lk} &= \frac{\partial L_{ik}}{\partial u^{j}} + \sum\limits_{l} \Gamma_{i k}^{l}L_{lj} \\ \implies && \frac{\partial L_{ij}}{\partial u^{k}} - \frac{\partial L_{ik}}{\partial u^{j}} &= \sum\limits_{l} \left( \Gamma_{i k}^{l}L_{lj} - \Gamma_{i j}^{l}L_{lk} \right) \end{align*}

The Codazzi-Mainardi equations are proved. Continuing with the same logic, the following equality holds.

ΓijlukLijLkl+pΓijpΓpkl=ΓiklujLikLjl+pΓikpΓpjl \frac{\partial \Gamma_{i j}^{l}}{\partial u^{k}} - L_{i j} L_{k}^{l} + \sum\limits_{p}\Gamma_{i j}^{p}\Gamma_{pk}^{l} = \frac{\partial \Gamma_{i k}^{l}}{\partial u^{j}} - L_{i k} L_{j}^{l} + \sum\limits_{p}\Gamma_{i k}^{p}\Gamma_{pj}^{l}

Well organized, we get the following.

LikLjlLijLkl=ΓiklujΓijluk+p(ΓikpΓpjlΓijpΓpkl)=Rijkl L_{i k} L_{j}^{l} - L_{i j} L_{k}^{l} = \frac{\partial \Gamma_{i k}^{l}}{\partial u^{j}} - \frac{\partial \Gamma_{i j}^{l}}{\partial u^{k}} + \sum\limits_{p} \left( \Gamma_{i k}^{p}\Gamma_{pj}^{l} - \Gamma_{i j}^{p}\Gamma_{pk}^{l} \right) = R_{ijk}^{l}

The Gauss’s equations are proved.

See Also


  1. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p141-142 Let x:UR3\mathbf{x} : U \to \mathbb{R}^{3} be a coordinate patch mapping on the surface MM. Let (u1,u2)(u^{1}, u^{2}) be the coordinates of UU. Given the Christoffel symbols x\mathbf{x} and the coefficients of the second fundamental form Γijk\Gamma_{ij}^{k} at LijL_{ij}↩︎