logo

Necessary and Sufficient Conditions for a Vector Field to be Parallel Along a Curve 📂Geometry

Necessary and Sufficient Conditions for a Vector Field to be Parallel Along a Curve

Theorem1

Let γ(t)=x(γ1(t),γ2(t))\boldsymbol{\gamma}(t) = \mathbf{x}\left( \gamma^{1}(t), \gamma^{2}(t) \right) be a regular curve on x\mathbf{x}, the coordinate patch. Let X(t)\mathbf{X}(t) be a differentiable vector field along the curve γ\boldsymbol{\gamma}.

X=X1x1+X2x2 \mathbf{X} = X^{1}\mathbf{x}_{1} + X^{2}\mathbf{x}_{2}

Then, the necessary and sufficient condition for X(t)\mathbf{X}(t) to be parallel along γ\boldsymbol{\gamma} is as follows.

0=dXkdt+i,jΓijkXidγjdt,k=1,2 0 = \dfrac{d X^{k}}{d t} + \sum_{i,j} \Gamma_{ij}^{k} X^{i}\dfrac{d \gamma^{j}}{d t},\quad k=1,2

Proof

The definition of X\mathbf{X} being parallel is that Xt\mathbf{X}_{t} is orthogonal to the surface. Therefore, since xl\mathbf{x}_{l} is the basis of the tangent plane, the following holds.

X is parallel     0=dXdt,xl \mathbf{X} \text{ is parallel } \iff 0 = \left\langle \dfrac{d \mathbf{X}}{d t}, \mathbf{x}_{l} \right\rangle

When we calculate Xt\mathbf{X}_{t}, it is as follows.

dXdt=ddt(iXixi)=idXidtxi+iXidxidt=idXidtxi+i,jXixijdγjdt \dfrac{d \mathbf{X}}{d t} = \dfrac{d}{dt}\left( \sum_{i}X^{i}\mathbf{x}_{i}\right) = \sum_{i} \dfrac{d X^{i}}{d t} \mathbf{x}_{i} + \sum_{i} X^{i}\dfrac{d \mathbf{x}_{i}}{d t} = \sum_{i} \dfrac{d X^{i}}{d t} \mathbf{x}_{i} + \sum_{i,j} X^{i}\mathbf{x}_{ij}\dfrac{d \gamma^{j}}{d t}

Therefore

X is parallel     0= idXidtxi,xl+i,jXixijdγjdt,xl= idXidtxi,xl+i,jxij,xlXidγjdt= idXidtgil+i,jxij,xlXidγjdt \begin{align} \mathbf{X} \text{ is parallel } \iff 0 =&\ \left\langle \sum_{i} \dfrac{d X^{i}}{d t} \mathbf{x}_{i} , \mathbf{x}_{l} \right\rangle + \left\langle \sum_{i,j} X^{i}\mathbf{x}_{ij}\dfrac{d \gamma^{j}}{d t} , \mathbf{x}_{l} \right\rangle \nonumber \\ =&\ \sum_{i} \dfrac{d X^{i}}{d t} \left\langle \mathbf{x}_{i} , \mathbf{x}_{l} \right\rangle + \sum_{i,j}\left\langle \mathbf{x}_{ij} , \mathbf{x}_{l} \right\rangle X^{i}\dfrac{d \gamma^{j}}{d t} \nonumber \\ =&\ \sum_{i} \dfrac{d X^{i}}{d t} g_{il} + \sum_{i,j}\left\langle \mathbf{x}_{ij} , \mathbf{x}_{l} \right\rangle X^{i}\dfrac{d \gamma^{j}}{d t} \label{dfsdf} \end{align}

Here, gilg_{il} is the coefficient of the first fundamental form. Now, multiplying both sides of the above equation by glkg^{lk} and summing over the index ll gives the following.

0=i,ldXidtgilglk+i,j,lxij,xlglkXidγjdt 0 = \sum_{i,l} \dfrac{d X^{i}}{d t} g_{il}g^{lk} + \sum_{i,j,l}\left\langle \mathbf{x}_{ij} , \mathbf{x}_{l} \right\rangle g^{lk} X^{i}\dfrac{d \gamma^{j}}{d t}

Then, by the properties of gilglkg_{il}g^{lk} and the definition of the Christoffel symbols, the following holds.

0= idXidtδik+i,jΓijkXidγjdt= dXkdt+i,jΓijkXidγjdt,k=1,2 \begin{align*} 0 =&\ \sum_{i} \dfrac{d X^{i}}{d t} \delta_{i}^{k} + \sum_{i,j} \Gamma_{ij}^{k} X^{i}\dfrac{d \gamma^{j}}{d t} \\ =&\ \dfrac{d X^{k}}{d t} + \sum_{i,j} \Gamma_{ij}^{k} X^{i}\dfrac{d \gamma^{j}}{d t},\quad k=1,2 \end{align*}

Conversely, multiplying both sides of the above equation by gklg_{kl} and summing over the index kk gives (1)(1).


  1. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p117-118 ↩︎