logo

Definition and Relationship between the Gaussian Map and Gaussian Curvature 📂Geometry

Definition and Relationship between the Gaussian Map and Gaussian Curvature

Definition1

A function ν\nu that maps each point pp on a surface MM to a unit normal is called the Gaussian map.

ν:MS2andν(p)=np \nu : M \to \mathbb{S}^{2} \quad \text{and} \quad \nu (p) = \mathbf{n}_{p}

Description

The Gaussian map is also referred to as the normal spherical image.

Theorem

Let us call the area of any region R\mathscr{R} on the surface A(R)A(\mathscr{R}) as the area of R\mathscr{R}. Then the following holds.

K=limRpA(ν(R))A(R) K = \lim \limits_{\mathscr{R} \to p} \dfrac{A(\nu (\mathscr{R}))}{A(\mathscr{R})}

Here, KK is the Gaussian curvature.

Proof

Assume that n:x1(R)S2\mathbf{n} : \mathbf{x}^{-1}(\mathscr{R}) \to \mathbb{S}^{2} is regular. Then it becomes a coordinate chart mapping.

nu1×nu20 \dfrac{\partial \mathbf{n}}{\partial u_{1}} \times \dfrac{\partial \mathbf{n}}{\partial u_{2}} \ne 0

Since n\mathbf{n} itself is a coordinate chart mapping, it can be written as follows.

A(ν(R))=x1(R)[n1,n2,m]du1du2 A( \nu (\mathscr{R})) = \int\int_{\mathbf{x}^{-1}(\mathscr{R})} \left[ \mathbf{n}_{1}, \mathbf{n}_{2}, \mathbf{m} \right] du^{1}du^{2}

m=n1×n2n1×n2 \mathbf{m} = \dfrac{\mathbf{n}_{1} \times \mathbf{n}_{2}}{\left\| \mathbf{n}_{1} \times \mathbf{n}_{2} \right\|}

But m\mathbf{m} is the normal of S2\mathbb{S}^{2}, so in fact n=m\mathbf{n} = \mathbf{m} is.

limRpA(ν(R))A(R)=[n1,n2,n][x1,x2,n] \lim \limits_{\mathscr{R} \to p} \dfrac{A(\nu (\mathscr{R}))}{A(\mathscr{R})} = \dfrac{\left[ \mathbf{n}_{1}, \mathbf{n}_{2}, \mathbf{n} \right]}{\left[ \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{n} \right]}

By calculating the scalar triple product,

(n1×n2)n=(L(x1)×L(x2))n=((L11x1+L21x2)×(L12x1+L22x2))n=(L11L22L21L12)(x1×x2)n \begin{align*} (\mathbf{n}_{1} \times \mathbf{n}_{2}) \cdot \mathbf{n} &= \left( L(\mathbf{x}_{1})\times L(\mathbf{x}_{2}) \right) \cdot \mathbf{n} \\ &= \left( \left( {L^{1}}_{1}\mathbf{x}_{1} + {L^{2}}_{1}\mathbf{x}_{2} \right) \times \left( {L^{1}}_{2}\mathbf{x}_{1} + {L^{2}}_{2}\mathbf{x}_{2} \right) \right) \cdot \mathbf{n} \\ &= \left( {L^{1}}_{1}{L^{2}}_{2} - {L^{2}}_{1}{L^{1}}_{2} \right) (\mathbf{x}_{1} \times \mathbf{x}_{2}) \cdot \mathbf{n} \end{align*}

In this case, Lij=kLkjgki{L^{i}}_{j} = \sum \limits_{k} L_{kj}g^{ki} is. Therefore

limRpA(ν(R))A(R)=[n1,n2,n][x1,x2,n]=(L11L22L21L12)(x1×x2)n(x1×x2)n=(L11L22L21L12)=det([Lji])=K \begin{align*} \lim \limits_{\mathscr{R} \to p} \dfrac{A(\nu (\mathscr{R}))}{A(\mathscr{R})} &= \dfrac{\left[ \mathbf{n}_{1}, \mathbf{n}_{2}, \mathbf{n} \right]}{\left[ \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{n} \right]} \\[1em] &= \dfrac{\left( {L^{1}}_{1}{L^{2}}_{2} - {L^{2}}_{1}{L^{1}}_{2} \right) (\mathbf{x}_{1} \times \mathbf{x}_{2}) \cdot \mathbf{n}}{(\mathbf{x}_{1} \times \mathbf{x}_{2}) \cdot \mathbf{n}} \\[1em] &= \left( {L^{1}}_{1}{L^{2}}_{2} - {L^{2}}_{1}{L^{1}}_{2} \right) \\ &= \det ([L_{j}^{i}]) \\ &= K \end{align*}


  1. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p130-131 ↩︎