logo

Euler's Theorem in Differential Geometry 📂Geometry

Euler's Theorem in Differential Geometry

Theorem1

Let’s define the unit tangent vector to the surface MM at point pp as Y\mathbf{Y}.

YTpMandY=1 \mathbf{Y} \in T_{p}M \quad \text{and} \quad \left\| \mathbf{Y} \right\| = 1

Let κ1κ2\kappa_{1} \ge \kappa_{2} represent the principal curvature at pp. Then, the following equation holds:

II(Y,Y)=κ1cos2θ+κ2sin2θ II(\mathbf{Y}, \mathbf{Y}) = \kappa_{1} \cos^{2} \theta + \kappa_{2} \sin^{2} \theta

In this context, IIII represents the second fundamental form, X1\mathbf{X}_{1} represents the principal direction corresponding to κ1\kappa_{1}, and θ\theta represents the angle between Y\mathbf{Y} and X1\mathbf{X}_{1}.

Proof

By the definition of principal curvature, the following is true:

L(Xi)=κiX1,i=1,2 L(\mathbf{X}_{i}) = \kappa_{i} \mathbf{X}_{1},\quad i=1,2

Since Y\mathbf{Y} is a unit vector and {X1,X2}\left\{ \mathbf{X}_{1}, \mathbf{X}_{2} \right\} is the orthonormal basis for TpMT_{p}M, the angle between X1\mathbf{X}_{1} can be expressed as θ\theta. Hence, we can express it as follows:

Y=cosθX1+sinθX2 \mathbf{Y} = \cos \theta \mathbf{X}_{1} + \sin \theta \mathbf{X}_{2}

Therefore, we obtain the following. Since II(Y,Y)=L(Y),YII (\mathbf{Y}, \mathbf{Y}) = \left\langle L(\mathbf{Y}), \mathbf{Y} \right\rangle,

II(Y,Y)= L(Y),Y= L(cosθX1+sinθX2),cosθX1+sinθX2= cosθL(X1)+sinθL(X2),cosθX1+sinθX2= κ1cosθX1+κ2sinθX2,cosθX1+sinθX2= κ1cos2θ+κ2sin2θ \begin{align*} II (\mathbf{Y}, \mathbf{Y}) =&\ \left\langle L(\mathbf{Y}), \mathbf{Y} \right\rangle \\ =&\ \left\langle L(\cos \theta \mathbf{X}_{1} + \sin \theta \mathbf{X}_{2}), \cos \theta \mathbf{X}_{1} + \sin \theta \mathbf{X}_{2} \right\rangle \\ =&\ \left\langle \cos \theta L(\mathbf{X}_{1}) + \sin \theta L(\mathbf{X}_{2}), \cos \theta \mathbf{X}_{1} + \sin \theta \mathbf{X}_{2} \right\rangle \\ =&\ \left\langle \kappa_{1} \cos \theta \mathbf{X}_{1} + \kappa_{2} \sin \theta \mathbf{X}_{2}, \cos \theta \mathbf{X}_{1} + \sin \theta \mathbf{X}_{2} \right\rangle \\ =&\ \kappa_{1} \cos^{2} \theta + \kappa_{2} \sin^{2} \theta \end{align*}


  1. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p129 ↩︎