logo

The Relationship between the Fundamental Form and Coordinate Transformation 📂Geometry

The Relationship between the Fundamental Form and Coordinate Transformation

Overview1

Given the coordinate transformation f:VUf : V \to U, this explains the relationship between the metric gg on UU and the metric g\overline{g} on VV.

Einstein notation is used.

Formulas

For the metric gg of coordinate patch mapping x:UR3\mathbf{x} : U \to \mathbb{R}^{3} and the metric g\overline{g} of y=xf:VR3\mathbf{y} = \mathbf{x} \circ f : V \to \mathbb{R}^{3}, and the tangent vector X=Xixi=Xαyα\mathbf{X} = X^{i}\mathbf{x}_{i} = \overline{X}^{\alpha} \mathbf{y}_{\alpha}, the following relationship holds.

Xi=αXαuivαgij=α,βgαβvαuivβujg=g(det[vαui])2gkl=γ,δgγδukvγuluδ \begin{align} X^{i} &= \sum\limits_{\alpha} \overline{X}^{\alpha} \dfrac{\partial u^{i}}{\partial v^{\alpha}} \\ g_{ij} &= \sum\limits_{\alpha, \beta} \overline{g}_{\alpha \beta}\dfrac{\partial v^{\alpha}}{\partial u^{i}} \dfrac{\partial v^{\beta}}{\partial u^{j}} \\ g &= \overline{g} \left( \det \begin{bmatrix} \dfrac{\partial v^{\alpha}}{\partial u^{i}} \end{bmatrix} \right)^{2} \\ g^{kl} &= \sum\limits_{\gamma, \delta} \overline{g}^{\gamma \delta}\dfrac{\partial u^{k}}{\partial v^{\gamma}} \dfrac{\partial u^{l}}{\partial u^{\delta}} \\ \end{align}

Xα=iXivαuigαβ=i,jgijuivαujvjg=g(det[uivα])2gγδ=k,lgklvγukvδul \begin{align} \overline{X}^{\alpha} &= \sum\limits_{i} X^{i} \dfrac{\partial v^{\alpha}}{\partial u^{i}} \\ \overline{g}_{\alpha \beta} &= \sum\limits_{i, j} g_{i j}\dfrac{\partial u^{i}}{\partial v^{\alpha}} \dfrac{\partial u^{j}}{\partial v^{j}} \\ \overline{g} &= g \left( \det \begin{bmatrix} \dfrac{\partial u^{i}}{\partial v^{\alpha}} \end{bmatrix} \right)^{2} \\ \overline{g}^{\gamma \delta} &= \sum\limits_{k, l} g^{kl} \dfrac{\partial v^{\gamma}}{\partial u^{k}} \dfrac{\partial v^{\delta}}{\partial u^{l}} \end{align}

Explanation

(1) (4)(1) ~ (4) commonly explains how to represent the information on the UU coordinate system as information on the VV coordinate system. Among them, (1),(4)(1), (4) includes the Jacobian of f:VUf : V \to U, and (2),(3)(2), (3) includes the Jacobian of g=f1=UVg = f^{-1} = U \to V. Traditionally, transformations like (1),(4)(1), (4) are called contravariant transformations. When JJ is the Jacobian of ff,

[X1X2]=[u1v1u1v2u2v1u2v2][X1X2]=J[X1X2] \begin{equation} \begin{bmatrix} X^{1} \\ X^{2} \end{bmatrix} = \begin{bmatrix} \dfrac{\partial u^{1}}{\partial v^{1}} & \dfrac{\partial u^{1}}{\partial v^{2}} \\[1em] \dfrac{\partial u^{2}}{\partial v^{1}} & \dfrac{\partial u^{2}}{\partial v^{2}} \end{bmatrix} \begin{bmatrix} \overline{X}^{1} \\ \overline{X}^{2} \end{bmatrix} = J \begin{bmatrix} \overline{X}^{1} \\ \overline{X}^{2} \end{bmatrix} \tag{1} \end{equation}

[g11g12g21g22]=[u1v1u1v2u2v1u2v2][g11g12g21g22][u1v1u2v1u1v2u2v2]=J[g11g12g21g22]Jt \begin{equation} \begin{align*} \begin{bmatrix} g^{11} & g^{12} \\[1em] g^{21} & g^{22} \end{bmatrix} &= \begin{bmatrix} \dfrac{\partial u^{1}}{\partial v^{1}} & \dfrac{\partial u^{1}}{\partial v^{2}} \\[1em] \dfrac{\partial u^{2}}{\partial v^{1}} & \dfrac{\partial u^{2}}{\partial v^{2}} \end{bmatrix} \begin{bmatrix} \overline{g}^{11} & \overline{g}^{12} \\[1em] \overline{g}^{21} & \overline{g}^{22} \end{bmatrix} \begin{bmatrix} \dfrac{\partial u^{1}}{\partial v^{1}} & \dfrac{\partial u^{2}}{\partial v^{1}} \\[1em] \dfrac{\partial u^{1}}{\partial v^{2}} & \dfrac{\partial u^{2}}{\partial v^{2}} \end{bmatrix} \\ &= J \begin{bmatrix} \overline{g}^{11} & \overline{g}^{12} \\[1em] \overline{g}^{21} & \overline{g}^{22} \end{bmatrix} J^{t} \end{align*} \tag{4} \end{equation}

Transformations like (2)(2) are called covariant transformations.

[g11g12g21g22]=[v1u1v2u1v1u2v2u2][g11g12g21g22][v1u1v1u2v2u1v2u2]=(J1)t[g11g12g21g22]J1 \begin{equation} \begin{align*} \begin{bmatrix} g_{11} & g_{12} \\[1em] g_{21} & g_{22} \end{bmatrix} &= \begin{bmatrix} \dfrac{\partial v^{1}}{\partial u^{1}} & \dfrac{\partial v^{2}}{\partial u^{1}} \\[1em] \dfrac{\partial v^{1}}{\partial u^{2}} & \dfrac{\partial v^{2}}{\partial u^{2}} \end{bmatrix} \begin{bmatrix} \overline{g}_{11} & \overline{g}_{12} \\[1em] \overline{g}_{21} & \overline{g}_{22} \end{bmatrix} \begin{bmatrix} \dfrac{\partial v^{1}}{\partial u^{1}} & \dfrac{\partial v^{1}}{\partial u^{2}} \\[1em] \dfrac{\partial v^{2}}{\partial u^{1}} & \dfrac{\partial v^{2}}{\partial u^{2}} \end{bmatrix} \\ &= (J^{-1})^{t} \begin{bmatrix} \overline{g}_{11} & \overline{g}_{12} \\[1em] \overline{g}_{21} & \overline{g}_{22} \end{bmatrix} J^{-1} \end{align*} \tag{2} \end{equation}

(3)(3) is not a transformation because it does not include matrix multiplication. If (5),(6),(8)(5), (6), (8) is represented as a matrix multiplication, then,

[X1X2]=[v1u1v1u2v2u1v2u2][X1X2]=J1[X1X2] \begin{equation} \begin{bmatrix} \overline{X}^{1} \\ \overline{X}^{2} \end{bmatrix} = \begin{bmatrix} \dfrac{\partial v^{1}}{\partial u^{1}} & \dfrac{\partial v^{1}}{\partial u^{2}} \\[1em] \dfrac{\partial v^{2}}{\partial u^{1}} & \dfrac{\partial v^{2}}{\partial u^{2}} \end{bmatrix} \begin{bmatrix} \overline{X}^{1} \\ \overline{X}^{2} \end{bmatrix} = J^{-1} \begin{bmatrix} \overline{X}^{1} \\ \overline{X}^{2} \end{bmatrix} \tag{5} \end{equation}

[g11g12g21g22]=[u1v1u2v1u1v2u2v2][g11g12g21g22][u1v1u1v2u2v1u2v2]=Jt[g11g12g21g22]J \begin{equation} \begin{align*} \begin{bmatrix} \overline{g}_{11} & \overline{g}_{12} \\[1em] \overline{g}_{21} & \overline{g}_{22} \end{bmatrix} &= \begin{bmatrix} \dfrac{\partial u^{1}}{\partial v^{1}} & \dfrac{\partial u^{2}}{\partial v^{1}} \\[1em] \dfrac{\partial u^{1}}{\partial v^{2}} & \dfrac{\partial u^{2}}{\partial v^{2}} \end{bmatrix} \begin{bmatrix} g_{11} & g_{12} \\[1em] g_{21} & g_{22} \end{bmatrix} \begin{bmatrix} \dfrac{\partial u^{1}}{\partial v^{1}} & \dfrac{\partial u^{1}}{\partial v^{2}} \\[1em] \dfrac{\partial u^{2}}{\partial v^{1}} & \dfrac{\partial u^{2}}{\partial v^{2}} \end{bmatrix} \\ &= J^{t} \begin{bmatrix} g_{11} & g_{12} \\[1em] g_{21} & g_{22} \end{bmatrix} J \end{align*} \tag{6} \end{equation}

[g11g12g21g22]=[v1u1v1u2v2u1v2u2][g11g12g21g22][v1u1v2u1v1u2v2u2]=J1[g11g12g21g22](J1)t \begin{equation} \begin{align*} \begin{bmatrix} \overline{g}^{11} & \overline{g}^{12} \\[1em] \overline{g}^{21} & \overline{g}^{22} \end{bmatrix} &= \begin{bmatrix} \dfrac{\partial v^{1}}{\partial u^{1}} & \dfrac{\partial v^{1}}{\partial u^{2}} \\[1em] \dfrac{\partial v^{2}}{\partial u^{1}} & \dfrac{\partial v^{2}}{\partial u^{2}} \end{bmatrix} \begin{bmatrix} g^{11} & g^{12} \\[1em] g^{21} & g^{22} \end{bmatrix} \begin{bmatrix} \dfrac{\partial v^{1}}{\partial u^{1}} & \dfrac{\partial v^{2}}{\partial u^{1}} \\[1em] \dfrac{\partial v^{1}}{\partial u^{2}} & \dfrac{\partial v^{2}}{\partial u^{2}} \end{bmatrix} \\ &= J^{-1} \begin{bmatrix} g^{11} & g^{12} \\[1em] g^{21} & g^{22} \end{bmatrix} (J^{-1})^{t} \end{align*} \tag{8} \end{equation}

Derivation

Let it be said as follows.

gij=xi,xj g_{ij} = \left\langle \mathbf{x}_{i}, \mathbf{x}_{j} \right\rangle

Regarding coordinate patch mapping y=xf:VR3\mathbf{y} = \mathbf{x} \circ f : V \to \mathbb{R}^{3}, let it be said as follows.

yα=yvα,gαβ=yα,yβ \mathbf{y}_{\alpha} = \dfrac{\partial \mathbf{y}}{\partial v^{\alpha}},\quad \overline{g}_{\alpha \beta} = \left\langle \mathbf{y}_{\alpha}, \mathbf{y}_{\beta} \right\rangle

g=det[gαβ],[gγβ]=[gαβ]1 \overline{g} = \det \begin{bmatrix} \overline{g}_{\alpha \beta} \end{bmatrix},\quad \begin{bmatrix} \overline{g}^{\gamma \beta} \end{bmatrix} = \begin{bmatrix} \overline{g}_{\alpha \beta} \end{bmatrix}^{-1}

By the chain rule, the following is obtained.

xi=yv1v1ui+yv2v2ui=αyvαvαui=yαvαui \mathbf{x}_{i} = \dfrac{\partial \mathbf{y}}{\partial v^{1}} \dfrac{\partial v^{1}}{\partial u^{i}} + \dfrac{\partial \mathbf{y}}{\partial v^{2}} \dfrac{\partial v^{2}}{\partial u^{i}} = \sum \limits_{\alpha} \dfrac{\partial \mathbf{y}}{\partial v^{\alpha}} \dfrac{\partial v^{\alpha}}{\partial u^{i}} = \mathbf{y}_{\alpha} \dfrac{\partial v^{\alpha}}{\partial u^{i}}

yα=xu1u1vα+xu2u2vα=ixuiuivα=xiuivα \mathbf{y}_{\alpha} = \dfrac{\partial \mathbf{x}}{\partial u^{1}} \dfrac{\partial u^{1}}{\partial v^{\alpha}} + \dfrac{\partial \mathbf{x}}{\partial u^{2}} \dfrac{\partial u^{2}}{\partial v^{\alpha}} = \sum \limits_{i} \dfrac{\partial \mathbf{x}}{\partial u^{i}} \dfrac{\partial u^{i}}{\partial v^{\alpha}} = \mathbf{x}_{i} \dfrac{\partial u^{i}}{\partial v^{\alpha}}

Therefore, gijg_{ij} is expressed as follows.

gij=xi,xj=yα,yβvαuivβuj=gαβvαuivβuj g_{ij} = \left\langle \mathbf{x}_{i}, \mathbf{x}_{j} \right\rangle = \left\langle \mathbf{y}_{\alpha}, \mathbf{y}_{\beta} \right\rangle \dfrac{\partial v^{\alpha}}{\partial u^{i}} \dfrac{\partial v^{\beta}}{\partial u^{j}} = \overline{g}_{\alpha \beta}\dfrac{\partial v^{\alpha}}{\partial u^{i}} \dfrac{\partial v^{\beta}}{\partial u^{j}}

When represented as matrix multiplication, it looks like below.

[g11g12g21g22]=[v1u1v2u1v1u2v2u2][g11g12g21g22][v1u1v1u2v2u1v2u2] \begin{bmatrix} g_{11} & g_{12} \\[1em] g_{21} & g_{22} \end{bmatrix} = \begin{bmatrix} \dfrac{\partial v^{1}}{\partial u^{1}} & \dfrac{\partial v^{2}}{\partial u^{1}} \\[1em] \dfrac{\partial v^{1}}{\partial u^{2}} & \dfrac{\partial v^{2}}{\partial u^{2}} \end{bmatrix} \begin{bmatrix} \overline{g}_{11} & \overline{g}_{12} \\[1em] \overline{g}_{21} & \overline{g}_{22} \end{bmatrix} \begin{bmatrix} \dfrac{\partial v^{1}}{\partial u^{1}} & \dfrac{\partial v^{1}}{\partial u^{2}} \\[1em] \dfrac{\partial v^{2}}{\partial u^{1}} & \dfrac{\partial v^{2}}{\partial u^{2}} \end{bmatrix}

Assuming JJ is the Jacobian of f:VUf : V \to U.

J=[u1v1u1v2u2v1u2v2]andJ1=[v1u1v1u2v2u1v2u2] J = \begin{bmatrix} \dfrac{\partial u^{1}}{\partial v^{1}} & \dfrac{\partial u^{1}}{\partial v^{2}} \\[1em] \dfrac{\partial u^{2}}{\partial v^{1}} & \dfrac{\partial u^{2}}{\partial v^{2}} \end{bmatrix} \quad \text{and} \quad J^{-1} = \begin{bmatrix} \dfrac{\partial v^{1}}{\partial u^{1}} & \dfrac{\partial v^{1}}{\partial u^{2}} \\[1em] \dfrac{\partial v^{2}}{\partial u^{1}} & \dfrac{\partial v^{2}}{\partial u^{2}} \end{bmatrix}

Then,

[gij]=(J1)t[gαβ]J1 \begin{bmatrix} g_{ij} \end{bmatrix} = (J^{-1})^{t} \begin{bmatrix} \overline{g}_{\alpha \beta} \end{bmatrix} J^{-1}

g=det[gij]=det((J1)t[gαβ]J1)=det(J1)tdet[gαβ]detJ1=det[gαβ](detJ1)2=g(det[vαui])2 \begin{align*} g = \det \begin{bmatrix} g_{ij} \end{bmatrix} = \det \Big( (J^{-1})^{t} \begin{bmatrix} \overline{g}_{\alpha \beta} \end{bmatrix} J^{-1} \Big) &= \det (J^{-1})^{t} \det \begin{bmatrix} \overline{g}_{\alpha \beta} \end{bmatrix} \det J^{-1} \\ &= \det \begin{bmatrix} \overline{g}_{\alpha \beta} \end{bmatrix} (\det J^{-1})^{2} \\ &= \overline{g} \left( \det \begin{bmatrix} \dfrac{\partial v^{\alpha}}{\partial u^{i}} \end{bmatrix} \right)^{2} \end{align*}

Also, the inverse matrix is,

[gkl]=[gij]1=((J1)t[gαβ]J1)1=J[gαβ]1Jt=J[gγδ]Jt \begin{bmatrix} g^{kl} \end{bmatrix} = \begin{bmatrix} g_{ij} \end{bmatrix}^{-1} = \Big( (J^{-1})^{t} \begin{bmatrix} \overline{g}_{\alpha \beta} \end{bmatrix} J^{-1} \Big)^{-1} = J \begin{bmatrix} \overline{g}_{\alpha \beta} \end{bmatrix}^{-1} J^{t} = J \begin{bmatrix} \overline{g}^{\gamma \delta} \end{bmatrix} J^{t}

    gkl=gγδukvγuluδ \implies g^{kl} = \overline{g}^{\gamma \delta}\dfrac{\partial u^{k}}{\partial v^{\gamma}} \dfrac{\partial u^{l}}{\partial u^{\delta}}

If the tangent vector is considered as X=Xixi=Xαyα\mathbf{X} = X^{i}\mathbf{x}_{i} = \overline{X}^{\alpha} \mathbf{y}_{\alpha},

Xixi=Xαyα=Xαuivαxi    Xi=Xαuivα X^{i}\mathbf{x}_{i} = \overline{X}^{\alpha} \mathbf{y}_{\alpha} = \overline{X}^{\alpha} \dfrac{\partial u^{i}}{\partial v^{\alpha}} \mathbf{x}_{i} \implies X^{i} = \overline{X}^{\alpha} \dfrac{\partial u^{i}}{\partial v^{\alpha}}

By considering UU, VV in reverse, the remaining results are obtained.


  1. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p96-98 ↩︎