logo

The Relationship between the Second Normal Form and the Vingarten Map 📂Geometry

The Relationship between the Second Normal Form and the Vingarten Map

Theorem1

Let’s call the tangent vector for a point pp on a surface MM as X,YTpM\mathbf{X}, \mathbf{Y} \in T_{p}M. Then the following holds.

II(X,Y)=L(X),Y=X,L(Y) II(\mathbf{X}, \mathbf{Y}) = \left\langle L(\mathbf{X}), \mathbf{Y} \right\rangle = \left\langle \mathbf{X}, L(\mathbf{Y}) \right\rangle

Here, LL is the Weingarten map.

Description

In other words, the Weingarten map LL is a self-adjoint linear transformation.

Proof

Properties of the Weingarten Map

If we define Llk=iLikgil{L^{l}}_{k} = \sum \limits_{i} L_{ik}g^{il}, then the following holds.

L(xk)=lLlkxlL(\mathbf{x}_{k}) = \sum_{l} {L^{l}}_{k}\mathbf{x}_{l}

Here, LijL_{ij} is the coefficient of the second fundamental form, [gil][g^{il}] is the inverse matrix of the first fundamental form coefficient matrix.

Let’s say X=Xixi,Y=Yjxj\mathbf{X} = X^{i}\mathbf{x}_{i}, \mathbf{Y} = Y^{j}\mathbf{x}_{j}. Then, by the properties of the Weingarten map, the following holds. Using Einstein notation,

L(X),Y= XiLlixl,Yjxj= XiYjLlixl,xj= XiYjLliglj= XiYjLkigklglj= XiYjLkiδjk= XiYjLji= II(X,Y) \begin{align*} \left\langle L(\mathbf{X}) , \mathbf{Y} \right\rangle =&\ \left\langle X^{i}{L^{l}}_{i}\mathbf{x}_{l}, Y^{j}\mathbf{x}_{j} \right\rangle \\ =&\ X^{i}Y^{j}{L^{l}}_{i} \left\langle \mathbf{x}_{l}, \mathbf{x}_{j} \right\rangle \\ =&\ X^{i}Y^{j}{L^{l}}_{i} g_{lj} \\ =&\ X^{i}Y^{j}L_{ki}g^{kl} g_{lj} \\ =&\ X^{i}Y^{j}L_{ki}\delta_{j}^{k} \\ =&\ X^{i}Y^{j}L_{ji} \\ =&\ II(\mathbf{X}, \mathbf{Y}) \end{align*}

The same result is obtained by the same method for X,L(Y)\left\langle \mathbf{X}, L(\mathbf{Y}) \right\rangle as well.


  1. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p127 ↩︎