logo

Bingarten Equation 📂Geometry

Bingarten Equation

Theorem1

On the surface MM, the following equation holds.

nj=kLkjxk \mathbf{n}_{j} = - \sum_{k} {L^{k}}_{j}\mathbf{x}_{k}

Here, x:UM\mathbf{x} : U \to M is a coordinate chart mapping, n\mathbf{n} is the unit normal, and Lkj=iLijgik{L^{k}}_{j} = \sum\limits_{i}L_{ij}g^{ik} is.

Explanation

Consider the Frenet-Serret frame {T,N,B}\left\{ \mathbf{T}, \mathbf{N}, \mathbf{B} \right\} of a curve. Since these are three mutually orthogonal vectors, they form a basis of R3\mathbb{R}^{3}. Moreover, the derivative of each is expressed as a linear combination of the other vectors, which is called the Frenet-Serret equations.

T(s)= κ(s)N(s)N(s)= κ(s)T(s)+τ(s)B(s)B(s)= τ(s)N(s) \begin{align*} \mathbf{T}^{\prime}(s) =&\ \kappa (s) \mathbf{N}(s) \\ \mathbf{N}^{\prime}(s) =&\ - \kappa (s) \mathbf{T}(s) + \tau (s) \mathbf{B}(s) \\ \mathbf{B}^{\prime}(s) =&\ - \tau (s) \mathbf{N}(s) \end{align*}

Now, consider the set {x1,x2,n}\left\{ \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{n} \right\}. x1\mathbf{x}_{1} and x2\mathbf{x}_{2} generate the tangent space, and since n\mathbf{n} is perpendicular to these two, this set also forms a basis of R3\mathbb{R}^{3}. Therefore, from the Gauss equation and the Weingarten equations, we can obtain the following formula that serves a similar function to the Frenet-Serret equations for the surface MM.

xij=Lijn+kΓijkxknj=kLkjxk \begin{align*} \mathbf{x}_{ij} &= L_{ij}\mathbf{n} + \sum_{k} \Gamma_{ij}^{k}\mathbf{x}_{k} \\ \mathbf{n}_{j} &= - \sum_{k} {L^{k}}_{j}\mathbf{x}_{k} \end{align*}

Proof

Since nj=L(xj)\mathbf{n}_{j} = - L(\mathbf{x}_{j}) holds,

nj=L(xj)=kLkjxk \mathbf{n}_{j} = - L(\mathbf{x}_{j}) = - \sum_{k} {L^{k}}_{j}\mathbf{x}_{k}


  1. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p125-126 ↩︎