logo

Properties of the Second Normal Form 📂Geometry

Properties of the Second Normal Form

Definition

The second fundamental form is defined as a bilinear form on the tangent space TpMT_{p}M. For two tangent vectors X=Xixi\mathbf{X}=\sum X^{i}\mathbf{x}_{i} and Y=Yjxj\mathbf{Y} = \sum Y^{j}\mathbf{x}_{j}, it is defined as:

II(X,Y)=i,jLijXiYj II ( \mathbf{X}, \mathbf{Y}) = \sum _{i,j} L_{ij} X^{i} Y^{j}

where the coefficients LijL_{ij} are as follows.

Lij=xij,n L_{ij} = \left\langle \mathbf{x}_{ij}, \mathbf{n} \right\rangle

Properties1

  1. IIII is symmetric.

  2. If T\mathbf{T} is the tangent field of a unit speed curve γ\boldsymbol{\gamma}, then κn=II(T,T)\kappa_{n} = II (\mathbf{T}, \mathbf{T}) holds, where κn\kappa_{n} is the normal curvature.

  3. Let’s say α,β\boldsymbol{\alpha}, \boldsymbol{\beta} is a regular curve for which α(0)=β(0)\boldsymbol{\alpha}(0) = \boldsymbol{\beta}(0) holds. If the velocity vectors of the two curves satisfy α(0)=λβ(0)\boldsymbol{\alpha}^{\prime}(0) = \lambda \boldsymbol{\beta}^{\prime}(0) for λ0\lambda \ne 0, then the normal curvature κn\kappa_{n} of the two curves is the same when t=0t=0.

Explanation

  1. While it’s described for the case where t=0t=0, it naturally generalizes to any tt.

    Since the tangent is the magnitude of the velocity vector made to 11, the fact that the velocity vector is a constant multiple means Tα=±TβT_{\boldsymbol{\alpha}} = \pm T_{\boldsymbol{\beta}} holds for the tangent of the two curves.

    This implies that curves with tangents in the same direction have the same normal curvature, indicating that the normal curvature is determined solely by the tangent, not dependent on the curve itself.

Proof

Property 1

That IIII is symmetric means either II(X,Y)=II(Y,X)II( \mathbf{X}, \mathbf{Y} ) = II( \mathbf{Y}, \mathbf{X} ) or Lij=LjiL_{ij} = L_{ji} holds. Assuming the coordinate chart mapping x\mathbf{x} is sufficiently smooth, then xij=xji\mathbf{x}_{ij} = \mathbf{x}_{ji} holds. Therefore,

Lij=xij,n=xji,n=Lji L_{ij} = \left\langle \mathbf{x}_{ij}, \mathbf{n} \right\rangle = \left\langle \mathbf{x}_{ji}, \mathbf{n} \right\rangle = L_{ji}

Property 2

Let’s consider γ(s)=x(γ1(s),γ2(s))\boldsymbol{\gamma}(s) = \mathbf{x}\left( \gamma^{1}(s), \gamma^{2}(s) \right) to be a unit speed curve. Then the tangent, by the chain rule, is as follows.

T=dγds=ddsx(γ1(s),γ2(s))=xγ1γ1s+xγ2γ2s=(γ1)x1+(γ2)x2=T1x1+T2x2 \begin{align*} \mathbf{T} &= \dfrac{d \boldsymbol{\gamma}}{d s} = \dfrac{d }{d s}\mathbf{x}\left( \gamma^{1}(s), \gamma^{2}(s) \right) \\ &= \dfrac{\partial \mathbf{x}}{\partial \gamma^{1}}\dfrac{\partial \gamma^{1}}{\partial s} + \dfrac{\partial \mathbf{x}}{\partial \gamma^{2}}\dfrac{\partial \gamma^{2}}{\partial s} \\ &= (\gamma^{1})^{\prime}\mathbf{x}_{1} + (\gamma^{2})^{\prime}\mathbf{x}_{2} \\ &= T^{1}\mathbf{x}_{1} + T^{2}\mathbf{x}_{2} \end{align*}

    Ti=(γi) \implies T^{i} = (\gamma^{i})^{\prime}

Auxiliary Lemma

For any unit speed curve γ(s)=x(γ1(s),γ2(s))\boldsymbol{\gamma}(s) = \mathbf{x}\left( \gamma^{1}(s), \gamma^{2}(s) \right),

κn=i=12j=12Lij(γi)(γj) \kappa_{n} = \sum \limits_{i=1}^{2} \sum \limits_{j=1}^{2} L_{ij} (\gamma^{i})^{\prime} (\gamma^{j})^{\prime}

Thus, by the definition of the second fundamental form and the above auxiliary lemma, the following holds:

II(T,T)=i,jLijTiTj=i,jLij(γi)(γj)=κn II(\mathbf{T}, \mathbf{T}) = \sum\limits_{i, j} L_{ij}T^{i}T^{j} = \sum \limits_{i, j} L_{ij} (\gamma^{i})^{\prime} (\gamma^{j})^{\prime} = \kappa_{n}

Property 3

Let’s denote the tangent vectors at t=0t=0 of α\boldsymbol{\alpha} and β\boldsymbol{\beta} as Tα,TβT_{\boldsymbol{\alpha}}, T_{\boldsymbol{\beta}}, respectively. Since it’s assumed that α(0)=λβ(0)\boldsymbol{\alpha} ^{\prime}(0) = \lambda \boldsymbol{\beta} ^{\prime}(0), the following holds:

Tα=±Tβ T_{\boldsymbol{\alpha}} = \pm T_{\boldsymbol{\beta}}

Therefore, the following is true:

II(Tα,Tα)=II(±Tβ,±Tβ)=II(Tβ,Tβ) II ( T_{\boldsymbol{\alpha}}, T_{\boldsymbol{\alpha}}) = II ( \pm T_{\boldsymbol{\beta}}, \pm T_{\boldsymbol{\beta}}) = II ( T_{\boldsymbol{\beta}}, T_{\boldsymbol{\beta}})

Hence, by property 2, the normal curvature of the two curves when t=0t=0 is the same.


  1. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p123 ↩︎