logo

Two eigenvectors with different eigenvalues are orthogonal. 📂Quantum Mechanics

Two eigenvectors with different eigenvalues are orthogonal.

Summary

Any two eigenfunctions corresponding to distinct eigenvalues of an Hermitian operator AA are orthogonal to each other.

{Aψn=anψnAψm=amψm \begin{cases} A\psi_{n}=a_{n}\psi_{n} \\ A\psi_{m}=a_{m}\psi_{m} \end{cases}

If anama_{n} \ne a_{m},

ψnψm=0 \braket{\psi_{n} | \psi_{m}} = 0

Proof

Since eigenvalues of Hermitian operators are always real, the following holds:

Aψnψm=anψnψm=anψnψm \braket{A\psi_{n}|\psi_{m} } ={a_{n}}^{\ast}\braket{\psi_{n}|\psi_{m} } =a_{n}\braket{\psi_{n}|\psi_{m}}

Moreover, according to the definition of Hermitian operator,

Aψnψm=ψnAψm=ψnAψm=amψnψm \braket{A\psi_{n}|\psi_{m}}=\braket{\psi_{n}|A^{\dagger}\psi_{m}}=\braket{\psi_{n}|A\psi_{m}} = a_{m} \braket{\psi_{n} | \psi_{m}}

Therefore, subtracting the above two equations, we get:

0=AψnψmAψnψm=amψnψmanψnψm 0 = \braket{A\psi_{n}|\psi_{m}}- \braket{A\psi_{n}|\psi_{m}} = a_{m}\braket{\psi_{n}|\psi_{m}} - a_{n}\braket{\psi_{n}|\psi_{m}}     (aman)ψnψm=0 \implies (a_{m}-a_{n})\braket{\psi_{n}|\psi_{m}}=0

Given that amana_{m} \ne a_{n}, we have ψnψm=0\braket{\psi_{n}|\psi_{m}}=0.

See Also