logo

If It's the Shortest Curve, It's a Geodesic 📂Geometry

If It's the Shortest Curve, It's a Geodesic

Theorem1

Let’s say γ\boldsymbol{\gamma} is a unit speed curve connecting two points P=γ(a),Q=γ(b)P = \boldsymbol{\gamma}(a), Q = \boldsymbol{\gamma}(b) on surface MM. If γ\boldsymbol{\gamma} is the shortest distance curve connecting PP and QQ, then γ\boldsymbol{\gamma} is a geodesic.

Explanation

The converse does not hold. In other words, a geodesic is not necessarily the shortest distance curve.

Proof

Strategy: Prove by contradiction. What needs to be shown is κg=0\kappa_{g} = 0, so assume κg0\kappa_{g} \ne 0, and show that this leads to a contradiction.


Assume a<s0<ba \lt s_{0} \lt b and let κg\kappa_{g} be the geodesic curvature of γ\boldsymbol{\gamma}. Now assume κg(s0)0\kappa_{g}(s_{0}) \ne 0. Then, since γ\boldsymbol{\gamma} is continuous, there exists c,dc, d satisfying:

  • κg([c,d])0\kappa_{g}([c,d]) \ne 0
  • a<c<s0<d<ba \lt c \lt s_{0} \lt d \lt b
  • Regarding coordinate patch mapping x\mathbf{x}, γ([c,d])x(U)\boldsymbol{\gamma}([c,d]) \subset \mathbf{x}(U)

Now let’s define function λ:[c,d]R\lambda : [c,d] \to \mathbb{R} as follows.

λ(c)=λ(d)=0andλ(s0)0andλ(s)κg(s)0 for csd \lambda (c) = \lambda (d) = 0 \quad \text{and} \quad \lambda (s_{0}) \ne 0 \quad \text{and} \quad \lambda (s)\kappa_{g}(s) \ge 0 \quad \text{ for } c\le s \le d

Since S=n×γ\mathbf{S} = \mathbf{n} \times \boldsymbol{\gamma}^{\prime} is in the tangent space, let’s say λ(s)S=vi(s)xi\lambda (s) \mathbf{S} = \sum v^{i}(s)\mathbf{x}_{i} regarding some vi:[c,d]Rv^{i} : [c,d] \to \mathbb{R}.

Let’s assume it’s given as γ(s)=x(γ1(s),γ2(s))\boldsymbol{\gamma}(s) = \mathbf{x}(\gamma^{1}(s), \gamma^{2}(s)). Furthermore, consider the perturbation α(s;t)\boldsymbol{\alpha}(s ;t) of γ\boldsymbol{\gamma} for sufficiently small tt as below.

Slide17.PNG

α(s;t)=x(γ1(s)+tv1(s),γ2(s)+tv2(s)) \boldsymbol{\alpha}(s ;t) = \mathbf{x}\left( \gamma^{1}(s) + t v^{1}(s), \gamma^{2}(s) + t v^{2}(s) \right)

α\boldsymbol{\alpha} is a curve from γ(c)\boldsymbol{\gamma}(c) to γ(d)\boldsymbol{\gamma}(d), and α(s;0)=γ(s)\boldsymbol{\alpha}(s ; 0) = \boldsymbol{\gamma}(s). Let the length of α(s;t)\boldsymbol{\alpha}(s; t) be L(t)L(t).

L(t)=cdαs,αs1/2ds L(t) = \int_{c}^{d} \left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial s}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle ^{1/2} ds

Then α(s,0)=γ\boldsymbol{\alpha}(s, 0) = \boldsymbol{\gamma}, and since γ\boldsymbol{\gamma} is the shortest distance curve, L(t)L(t) has its minimum value when t=0t = 0. Also, since L(0)<L(t0)L(0) \lt L(t^{\ast} \ne 0), L(0)=0L^{\prime}(0) = 0. On the other hand, if we calculate LL^{\prime},

L(t)= ddtcdαs,αs1/2ds=cdtαs,αs1/2ds= cd1222αts,αsαs,αs1/2ds=cd2αts,αsαs,αs1/2ds \begin{align*} L^{\prime}(t) =&\ \dfrac{d }{d t} \int_{c}^{d} \left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial s}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle ^{1/2} ds = \int_{c}^{d} \dfrac{\partial }{\partial t}\left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial s}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle ^{1/2} ds \\[1em] =&\ \int_{c}^{d} \dfrac{1}{2} \dfrac{2\left\langle \dfrac{\partial^{2} \boldsymbol{\alpha}}{\partial t \partial s}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle }{\left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial s}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle ^{1/2}}ds = \int_{c}^{d}\dfrac{\left\langle \dfrac{\partial^{2} \boldsymbol{\alpha}}{\partial t \partial s}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle }{\left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial s}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle ^{1/2}}ds \end{align*}

At this point, when γ\boldsymbol{\gamma} is a unit speed curve, at t=0t=0,

αs,αs=γs,γs=1 \left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial s}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle = \left\langle \dfrac{\partial \boldsymbol{\gamma}}{\partial s}, \dfrac{\partial \boldsymbol{\gamma}}{\partial s} \right\rangle = 1

Therefore,

L(0)=cd2αts,αst=0ds L^{\prime}(0) = \int_{c}^{d} \left. \left\langle \dfrac{\partial^{2} \boldsymbol{\alpha}}{\partial t \partial s}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle \right|_{t=0} ds

Here, since ddsαt,αs=2αst,αs+αt,2αs2\dfrac{d}{ds} \left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial t}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle = \left\langle \dfrac{\partial ^{2} \boldsymbol{\alpha}}{\partial s \partial t}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle + \left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial t}, \dfrac{\partial ^{2} \boldsymbol{\alpha}}{\partial s^{2}} \right\rangle, substituting into the above equation,

L(0)= cdddsαt,αst=0αt,2αs2t=0ds= [αt,αst=0]cdcdαt,2αs2t=0ds \begin{align*} L^{\prime}(0) =&\ \int_{c}^{d} \left. \dfrac{d}{ds} \left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial t}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle \right|_{t=0} - \left. \left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial t}, \dfrac{\partial ^{2} \boldsymbol{\alpha}}{\partial s^{2}} \right\rangle \right|_{t=0} ds \\[1em] =&\ \left[ \left. \left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial t}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle \right|_{t=0} \right]_{c}^{d} - \int_{c}^{d}\left. \left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial t}, \dfrac{\partial ^{2} \boldsymbol{\alpha}}{\partial s^{2}} \right\rangle \right|_{t=0} ds \end{align*}

At this point, αtt=0=vi(s)xi=λ(s)S\left. \dfrac{\partial \boldsymbol{\alpha}}{\partial t} \right|_{t=0} = \sum v^{i}(s) \mathbf{x}_{i} = \lambda (s) \mathbf{S}, but since λ(c)=λ(d)=0\lambda (c) = \lambda (d)=0, the first term is 00. Therefore, 2αs2t=0=γ=κgS+κnn\left. \dfrac{\partial ^{2} \boldsymbol{\alpha}}{\partial s^{2}}\right|_{t=0} = \boldsymbol{\gamma}^{\prime \prime} = \kappa_{g}\mathbf{S} + \kappa_{n}\mathbf{n}, and since it was L(0)=0L^{\prime}(0) = 0,

0=L(0)= 0cdλ(s)S,κg(s)S+κn(s)nds= cdλ(s)κg(s)ds \begin{align*} 0 = L^{\prime}(0) =&\ 0 - \int_{c}^{d} \left\langle \lambda (s) \mathbf{S}, \kappa_{g}(s) \mathbf{S} + \kappa_{n}(s) \mathbf{n} \right\rangle ds \\ =&\ -\int _{c}^{d} \lambda (s) \kappa_{g}(s) ds \end{align*}

However, we assumed λ(s)κg(s)>0\lambda (s) \kappa_{g}(s) \gt 0, so there is a contradiction.


  1. Richard S. Millman and George D. Parker, Elements of Differential Geometry (1977), p113 ↩︎