If It's the Shortest Curve, It's a Geodesic
📂Geometry If It's the Shortest Curve, It's a Geodesic Theorem Let’s say γ \boldsymbol{\gamma} γ is a unit speed curve connecting two points P = γ ( a ) , Q = γ ( b ) P = \boldsymbol{\gamma}(a), Q = \boldsymbol{\gamma}(b) P = γ ( a ) , Q = γ ( b ) on surface M M M . If γ \boldsymbol{\gamma} γ is the shortest distance curve connecting P P P and Q Q Q , then γ \boldsymbol{\gamma} γ is a geodesic .
Explanation The converse does not hold. In other words, a geodesic is not necessarily the shortest distance curve.
Proof Strategy: Prove by contradiction. What needs to be shown is κ g = 0 \kappa_{g} = 0 κ g = 0 , so assume κ g ≠ 0 \kappa_{g} \ne 0 κ g = 0 , and show that this leads to a contradiction.
Assume a < s 0 < b a \lt s_{0} \lt b a < s 0 < b and let κ g \kappa_{g} κ g be the geodesic curvature of γ \boldsymbol{\gamma} γ . Now assume κ g ( s 0 ) ≠ 0 \kappa_{g}(s_{0}) \ne 0 κ g ( s 0 ) = 0 . Then, since γ \boldsymbol{\gamma} γ is continuous, there exists c , d c, d c , d satisfying:
κ g ( [ c , d ] ) ≠ 0 \kappa_{g}([c,d]) \ne 0 κ g ([ c , d ]) = 0 a < c < s 0 < d < b a \lt c \lt s_{0} \lt d \lt b a < c < s 0 < d < b Regarding coordinate patch mapping x \mathbf{x} x , γ ( [ c , d ] ) ⊂ x ( U ) \boldsymbol{\gamma}([c,d]) \subset \mathbf{x}(U) γ ([ c , d ]) ⊂ x ( U ) Now let’s define function λ : [ c , d ] → R \lambda : [c,d] \to \mathbb{R} λ : [ c , d ] → R as follows.
λ ( c ) = λ ( d ) = 0 and λ ( s 0 ) ≠ 0 and λ ( s ) κ g ( s ) ≥ 0 for c ≤ s ≤ d
\lambda (c) = \lambda (d) = 0 \quad \text{and} \quad \lambda (s_{0}) \ne 0 \quad \text{and} \quad \lambda (s)\kappa_{g}(s) \ge 0 \quad \text{ for } c\le s \le d
λ ( c ) = λ ( d ) = 0 and λ ( s 0 ) = 0 and λ ( s ) κ g ( s ) ≥ 0 for c ≤ s ≤ d
Since S = n × γ ′ \mathbf{S} = \mathbf{n} \times \boldsymbol{\gamma}^{\prime} S = n × γ ′ is in the tangent space, let’s say λ ( s ) S = ∑ v i ( s ) x i \lambda (s) \mathbf{S} = \sum v^{i}(s)\mathbf{x}_{i} λ ( s ) S = ∑ v i ( s ) x i regarding some v i : [ c , d ] → R v^{i} : [c,d] \to \mathbb{R} v i : [ c , d ] → R .
Let’s assume it’s given as γ ( s ) = x ( γ 1 ( s ) , γ 2 ( s ) ) \boldsymbol{\gamma}(s) = \mathbf{x}(\gamma^{1}(s), \gamma^{2}(s)) γ ( s ) = x ( γ 1 ( s ) , γ 2 ( s )) . Furthermore, consider the perturbation α ( s ; t ) \boldsymbol{\alpha}(s ;t) α ( s ; t ) of γ \boldsymbol{\gamma} γ for sufficiently small t t t as below.
α ( s ; t ) = x ( γ 1 ( s ) + t v 1 ( s ) , γ 2 ( s ) + t v 2 ( s ) )
\boldsymbol{\alpha}(s ;t) = \mathbf{x}\left( \gamma^{1}(s) + t v^{1}(s), \gamma^{2}(s) + t v^{2}(s) \right)
α ( s ; t ) = x ( γ 1 ( s ) + t v 1 ( s ) , γ 2 ( s ) + t v 2 ( s ) )
α \boldsymbol{\alpha} α is a curve from γ ( c ) \boldsymbol{\gamma}(c) γ ( c ) to γ ( d ) \boldsymbol{\gamma}(d) γ ( d ) , and α ( s ; 0 ) = γ ( s ) \boldsymbol{\alpha}(s ; 0) = \boldsymbol{\gamma}(s) α ( s ; 0 ) = γ ( s ) . Let the length of α ( s ; t ) \boldsymbol{\alpha}(s; t) α ( s ; t ) be L ( t ) L(t) L ( t ) .
L ( t ) = ∫ c d ⟨ ∂ α ∂ s , ∂ α ∂ s ⟩ 1 / 2 d s
L(t) = \int_{c}^{d} \left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial s}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle ^{1/2} ds
L ( t ) = ∫ c d ⟨ ∂ s ∂ α , ∂ s ∂ α ⟩ 1/2 d s
Then α ( s , 0 ) = γ \boldsymbol{\alpha}(s, 0) = \boldsymbol{\gamma} α ( s , 0 ) = γ , and since γ \boldsymbol{\gamma} γ is the shortest distance curve, L ( t ) L(t) L ( t ) has its minimum value when t = 0 t = 0 t = 0 . Also, since L ( 0 ) < L ( t ∗ ≠ 0 ) L(0) \lt L(t^{\ast} \ne 0) L ( 0 ) < L ( t ∗ = 0 ) , L ′ ( 0 ) = 0 L^{\prime}(0) = 0 L ′ ( 0 ) = 0 . On the other hand, if we calculate L ′ L^{\prime} L ′ ,
L ′ ( t ) = d d t ∫ c d ⟨ ∂ α ∂ s , ∂ α ∂ s ⟩ 1 / 2 d s = ∫ c d ∂ ∂ t ⟨ ∂ α ∂ s , ∂ α ∂ s ⟩ 1 / 2 d s = ∫ c d 1 2 2 ⟨ ∂ 2 α ∂ t ∂ s , ∂ α ∂ s ⟩ ⟨ ∂ α ∂ s , ∂ α ∂ s ⟩ 1 / 2 d s = ∫ c d ⟨ ∂ 2 α ∂ t ∂ s , ∂ α ∂ s ⟩ ⟨ ∂ α ∂ s , ∂ α ∂ s ⟩ 1 / 2 d s
\begin{align*}
L^{\prime}(t) =&\ \dfrac{d }{d t} \int_{c}^{d} \left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial s}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle ^{1/2} ds
= \int_{c}^{d} \dfrac{\partial }{\partial t}\left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial s}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle ^{1/2} ds \\[1em]
=&\ \int_{c}^{d} \dfrac{1}{2} \dfrac{2\left\langle \dfrac{\partial^{2} \boldsymbol{\alpha}}{\partial t \partial s}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle }{\left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial s}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle ^{1/2}}ds
= \int_{c}^{d}\dfrac{\left\langle \dfrac{\partial^{2} \boldsymbol{\alpha}}{\partial t \partial s}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle }{\left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial s}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle ^{1/2}}ds
\end{align*}
L ′ ( t ) = = d t d ∫ c d ⟨ ∂ s ∂ α , ∂ s ∂ α ⟩ 1/2 d s = ∫ c d ∂ t ∂ ⟨ ∂ s ∂ α , ∂ s ∂ α ⟩ 1/2 d s ∫ c d 2 1 ⟨ ∂ s ∂ α , ∂ s ∂ α ⟩ 1/2 2 ⟨ ∂ t ∂ s ∂ 2 α , ∂ s ∂ α ⟩ d s = ∫ c d ⟨ ∂ s ∂ α , ∂ s ∂ α ⟩ 1/2 ⟨ ∂ t ∂ s ∂ 2 α , ∂ s ∂ α ⟩ d s
At this point, when γ \boldsymbol{\gamma} γ is a unit speed curve, at t = 0 t=0 t = 0 ,
⟨ ∂ α ∂ s , ∂ α ∂ s ⟩ = ⟨ ∂ γ ∂ s , ∂ γ ∂ s ⟩ = 1
\left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial s}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle = \left\langle \dfrac{\partial \boldsymbol{\gamma}}{\partial s}, \dfrac{\partial \boldsymbol{\gamma}}{\partial s} \right\rangle = 1
⟨ ∂ s ∂ α , ∂ s ∂ α ⟩ = ⟨ ∂ s ∂ γ , ∂ s ∂ γ ⟩ = 1
Therefore,
L ′ ( 0 ) = ∫ c d ⟨ ∂ 2 α ∂ t ∂ s , ∂ α ∂ s ⟩ ∣ t = 0 d s
L^{\prime}(0) = \int_{c}^{d} \left. \left\langle \dfrac{\partial^{2} \boldsymbol{\alpha}}{\partial t \partial s}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle \right|_{t=0} ds
L ′ ( 0 ) = ∫ c d ⟨ ∂ t ∂ s ∂ 2 α , ∂ s ∂ α ⟩ t = 0 d s
Here, since d d s ⟨ ∂ α ∂ t , ∂ α ∂ s ⟩ = ⟨ ∂ 2 α ∂ s ∂ t , ∂ α ∂ s ⟩ + ⟨ ∂ α ∂ t , ∂ 2 α ∂ s 2 ⟩ \dfrac{d}{ds} \left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial t}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle = \left\langle \dfrac{\partial ^{2} \boldsymbol{\alpha}}{\partial s \partial t}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle + \left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial t}, \dfrac{\partial ^{2} \boldsymbol{\alpha}}{\partial s^{2}} \right\rangle d s d ⟨ ∂ t ∂ α , ∂ s ∂ α ⟩ = ⟨ ∂ s ∂ t ∂ 2 α , ∂ s ∂ α ⟩ + ⟨ ∂ t ∂ α , ∂ s 2 ∂ 2 α ⟩ , substituting into the above equation,
L ′ ( 0 ) = ∫ c d d d s ⟨ ∂ α ∂ t , ∂ α ∂ s ⟩ ∣ t = 0 − ⟨ ∂ α ∂ t , ∂ 2 α ∂ s 2 ⟩ ∣ t = 0 d s = [ ⟨ ∂ α ∂ t , ∂ α ∂ s ⟩ ∣ t = 0 ] c d − ∫ c d ⟨ ∂ α ∂ t , ∂ 2 α ∂ s 2 ⟩ ∣ t = 0 d s
\begin{align*}
L^{\prime}(0)
=&\ \int_{c}^{d} \left. \dfrac{d}{ds} \left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial t}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle \right|_{t=0} - \left. \left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial t}, \dfrac{\partial ^{2} \boldsymbol{\alpha}}{\partial s^{2}} \right\rangle \right|_{t=0} ds \\[1em]
=&\ \left[ \left. \left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial t}, \dfrac{\partial \boldsymbol{\alpha}}{\partial s} \right\rangle \right|_{t=0} \right]_{c}^{d} - \int_{c}^{d}\left. \left\langle \dfrac{\partial \boldsymbol{\alpha}}{\partial t}, \dfrac{\partial ^{2} \boldsymbol{\alpha}}{\partial s^{2}} \right\rangle \right|_{t=0} ds
\end{align*}
L ′ ( 0 ) = = ∫ c d d s d ⟨ ∂ t ∂ α , ∂ s ∂ α ⟩ t = 0 − ⟨ ∂ t ∂ α , ∂ s 2 ∂ 2 α ⟩ t = 0 d s [ ⟨ ∂ t ∂ α , ∂ s ∂ α ⟩ t = 0 ] c d − ∫ c d ⟨ ∂ t ∂ α , ∂ s 2 ∂ 2 α ⟩ t = 0 d s
At this point, ∂ α ∂ t ∣ t = 0 = ∑ v i ( s ) x i = λ ( s ) S \left. \dfrac{\partial \boldsymbol{\alpha}}{\partial t} \right|_{t=0} = \sum v^{i}(s) \mathbf{x}_{i} = \lambda (s) \mathbf{S} ∂ t ∂ α t = 0 = ∑ v i ( s ) x i = λ ( s ) S , but since λ ( c ) = λ ( d ) = 0 \lambda (c) = \lambda (d)=0 λ ( c ) = λ ( d ) = 0 , the first term is 0 0 0 . Therefore, ∂ 2 α ∂ s 2 ∣ t = 0 = γ ′ ′ = κ g S + κ n n \left. \dfrac{\partial ^{2} \boldsymbol{\alpha}}{\partial s^{2}}\right|_{t=0} = \boldsymbol{\gamma}^{\prime \prime} = \kappa_{g}\mathbf{S} + \kappa_{n}\mathbf{n} ∂ s 2 ∂ 2 α t = 0 = γ ′′ = κ g S + κ n n , and since it was L ′ ( 0 ) = 0 L^{\prime}(0) = 0 L ′ ( 0 ) = 0 ,
0 = L ′ ( 0 ) = 0 − ∫ c d ⟨ λ ( s ) S , κ g ( s ) S + κ n ( s ) n ⟩ d s = − ∫ c d λ ( s ) κ g ( s ) d s
\begin{align*}
0 = L^{\prime}(0) =&\ 0 - \int_{c}^{d} \left\langle \lambda (s) \mathbf{S}, \kappa_{g}(s) \mathbf{S} + \kappa_{n}(s) \mathbf{n} \right\rangle ds \\
=&\ -\int _{c}^{d} \lambda (s) \kappa_{g}(s) ds
\end{align*}
0 = L ′ ( 0 ) = = 0 − ∫ c d ⟨ λ ( s ) S , κ g ( s ) S + κ n ( s ) n ⟩ d s − ∫ c d λ ( s ) κ g ( s ) d s
However, we assumed λ ( s ) κ g ( s ) > 0 \lambda (s) \kappa_{g}(s) \gt 0 λ ( s ) κ g ( s ) > 0 , so there is a contradiction.
■