The Tangent Space on an n-Dimensional Differentiable Manifold is an n-Dimensional Vector Space
📂Geometry The Tangent Space on an n-Dimensional Differentiable Manifold is an n-Dimensional Vector Space Overview Let M M M be a n n n -dimensional differential manifold , and let T p M T_{p}M T p M be the tangent space at point p ∈ M p\in M p ∈ M . The tangent space becomes a vector space, specifically, a n n n -dimensional vector space. The following set becomes the basis of the tangent space, which is very useful in the study of differential manifolds.
B = { ∂ ∂ x i ∣ p : 1 ≤ i ≤ n }
\mathcal{B} = \left\{ \left. \dfrac{\partial }{\partial x_{i}} \right|_{p} : 1 \le i \le n \right\}
B = { ∂ x i ∂ p : 1 ≤ i ≤ n }
Theorem 1 T p M T_{p}M T p M is a R − \mathbb{R}- R − vector space .
Proof The conditions for being a vector space are as follows, of which we will prove only a few:
For u , v , w ∈ V \mathbf{u}, \mathbf{v}, \mathbf{w} \in V u , v , w ∈ V and k , l ∈ F k, l \in \mathbb{F} k , l ∈ F ,
(A1) If u , v \mathbf{u}, \mathbf{v} u , v is an element of V V V , then u + v \mathbf{u}+\mathbf{v} u + v is also an element of V V V .
(A2) u + v = v + u \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} u + v = v + u
(A3) ( u + v ) + w = u + ( v + w ) (\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w}) ( u + v ) + w = u + ( v + w )
(A4) For all u \mathbf{u} u in V V V , there exists 0 \mathbf{0} 0 in V V V such that u + 0 = 0 + u = u \mathbf{u} + \mathbf{0} = \mathbf{0} + \mathbf{u} = \mathbf{u} u + 0 = 0 + u = u .
(A5) For all u \mathbf{u} u in V V V , there exists v \mathbf{v} v in V V V such that u + v = v + u = 0 \mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u} = \mathbf{0} u + v = v + u = 0 .
(M1) If u \mathbf{u} u is an element of V V V , then k u k \mathbf{u} k u is also an element of V V V .
(M2) k ( u + v ) = k u + k v k(\mathbf{u} + \mathbf{v})=k\mathbf{u} + k\mathbf{v} k ( u + v ) = k u + k v
(M3) ( k + l ) u = k u + l u (k+l)\mathbf{u}=k\mathbf{u}+ l\mathbf{u} ( k + l ) u = k u + l u
(M4) k ( l u ) = ( k l ) ( u ) k(l\mathbf{u})=(kl)(\mathbf{u}) k ( l u ) = ( k l ) ( u )
(M5) For 1 ∈ F 1\in \mathbb{F} 1 ∈ F , 1 u = u 1\mathbf{u} = \mathbf{u} 1 u = u
Let it be X , Y ∈ T p M \mathbf{X}, \mathbf{Y} \in T_{p}M X , Y ∈ T p M . Let the set of differentiable functions on p p p be D \mathcal{D} D .
D : = { f : M → R ∣ functions on M that are differentiable at p }
\mathcal{D} := \left\{ f : M \to \mathbb{R} | \text{functions on } M \text{that are differentiable at } p \right\}
D := { f : M → R ∣ functions on M that are differentiable at p }
For being a vector space, the addition between elements and scalar multiplication must be defined. Let’s define the addition and scalar multiplication as follows.
( X + Y ) ( f ) : = X f + Y f ( r ⋅ X ) ( f ) : = r ⋅ X f , r ∈ R
(\mathbf{X} + \mathbf{Y}) (f) := \mathbf{X}f + \mathbf{Y}f
\\ (r \cdot \mathbf{X}) (f) := r \cdot \mathbf{X}f,\quad r \in \mathbb{R}
( X + Y ) ( f ) := X f + Y f ( r ⋅ X ) ( f ) := r ⋅ X f , r ∈ R
(A1) Since X \mathbf{X} X and Y \mathbf{Y} Y are functions in D → R \mathcal{D} \to \mathbb{R} D → R , X f , Y f ∈ R \mathbf{X}f, \mathbf{Y}f \in \mathbb{R} X f , Y f ∈ R holds. The sum of two real numbers is a real number, so X + Y : D → R \mathbf{X} + \mathbf{Y} : \mathcal{D} \to \mathbb{R} X + Y : D → R holds. Therefore, X + Y ∈ T p M \mathbf{X} + \mathbf{Y} \in T_{p}M X + Y ∈ T p M holds.
(M1) Since X f ∈ R \mathbf{X}f \in \mathbb{R} X f ∈ R and r ∈ R r \in \mathbb{R} r ∈ R , r ⋅ X f ∈ R r \cdot \mathbf{X} f \in \mathbb{R} r ⋅ X f ∈ R holds. Therefore, r X : D → R r\mathbf{X} : \mathcal{D} \to \mathbb{R} r X : D → R holds, and r X ∈ T p M r\mathbf{X} \in T_{p}M r X ∈ T p M is true.
(A4) Let’s define 0 : D → R \mathbf{0} : \mathcal{D} \to \mathbb{R} 0 : D → R as 0 f = 0 ( ∀ f ∈ D ) \mathbf{0} f = 0 (\forall f \in \mathcal{D}) 0 f = 0 ( ∀ f ∈ D ) . Then
( X + 0 ) ( f ) = X f + 0 f = X f
(\mathbf{X} + \mathbf{0})(f) = \mathbf{X}f + \mathbf{0}f = \mathbf{X}f
( X + 0 ) ( f ) = X f + 0 f = X f
(A5) If we define − X -\mathbf{X} − X as ( − X ) ( f ) : = ( − 1 ) ⋅ X f (-\mathbf{X})(f) := (-1) \cdot \mathbf{X}f ( − X ) ( f ) := ( − 1 ) ⋅ X f , by (M1), ( − 1 ) X ∈ T p M (-1)\mathbf{X} \in T_{p}M ( − 1 ) X ∈ T p M holds, and X + ( − X ) = 0 \mathbf{X} + (-\mathbf{X}) = \mathbf{0} X + ( − X ) = 0 is satisfied.
■
Theorem 2 T p M T_{p}M T p M is a n n n dimensional vector space. In particular, let x : U → M \mathbf{x} : U \to M x : U → M be the coordinate system for point p ∈ M p \in M p ∈ M . Then the set
B = { ∂ ∂ x i ∣ p : 1 ≤ i ≤ n }
\mathcal{B} = \left\{ \left. \dfrac{\partial }{\partial x_{i}} \right|_{p} : 1 \le i \le n \right\}
B = { ∂ x i ∂ p : 1 ≤ i ≤ n }
is the basis of the tangent space T p M T_{p}M T p M . In this case, ∂ ∂ x i ∣ p : D → R \left. \dfrac{\partial }{\partial x_{i}} \right|_{p} : \mathcal{D} \to \mathbb{R} ∂ x i ∂ p : D → R is defined as follows .
∂ ∂ x i ∣ p f : = ∂ ( f ∘ x ) ∂ u i ∣ p , f ∈ D
\left. \dfrac{\partial }{\partial x_{i}} \right|_{p} f := \left. \dfrac{\partial (f\circ \mathbf{x})}{\partial u_{i}} \right|_{p},\quad f \in \mathcal{D}
∂ x i ∂ p f := ∂ u i ∂ ( f ∘ x ) p , f ∈ D
( u 1 , … , u n ) (u_{1}, \dots, u_{n}) ( u 1 , … , u n ) are the coordinates of R \mathbb{R} R .
Proof According to the definition of basis , we need to show that B \mathcal{B} B is linearly independent, and generates T p M T_{p}M T p M .
Part 1. Linear independence
For the coordinate system x : U ⊂ R n → M \mathbf{x} : U \subset \mathbb{R}^{n} \to M x : U ⊂ R n → M , the coordinate functions x i : M → R x_{i} : M \to \mathbb{R} x i : M → R are as follows:
x ( u ) = p x − 1 ( p ) = ( x 1 ( p ) , … , x n ( p ) ) = ( u 1 , … , u n )
\mathbf{x}(\mathbf{u}) = p
\\ \mathbf{x}^{-1}(p) = (x_{1}(p), \dots, x_{n}(p)) = (u_{1}, \dots, u_{n})
x ( u ) = p x − 1 ( p ) = ( x 1 ( p ) , … , x n ( p )) = ( u 1 , … , u n )
If we let f = x j f = x_{j} f = x j ,
f ∘ x ( u ) = x j ∘ x ( u ) = x j ( x ( u ) ) = x j ( p ) = u j
f \circ \mathbf{x}(\mathbf{u}) = x_{j} \circ \mathbf{x}(\mathbf{u}) = x_{j}(\mathbf{x}(\mathbf{u})) = x_{j}(p) = u_{j}
f ∘ x ( u ) = x j ∘ x ( u ) = x j ( x ( u )) = x j ( p ) = u j
Therefore,
∂ ∂ x i ∣ p x j = ∂ ( x j ∘ x ) ∂ u i ∣ p = ∂ u j ∂ u i = δ i j
\left. \dfrac{\partial }{\partial x_{i}} \right|_{p} x_{j} = \left. \dfrac{\partial (x_{j} \circ \mathbf{x})}{\partial u_{i}} \right|_{p} = \dfrac{\partial u_{j}}{\partial u_{i}} = \delta_{ij}
∂ x i ∂ p x j = ∂ u i ∂ ( x j ∘ x ) p = ∂ u i ∂ u j = δ ij
Here, δ i j \delta_{ij} δ ij is the Kronecker delta .
Looking at equation c i ∂ ∂ x i ∣ p = 0 c_{i}\left. \dfrac{\partial }{\partial x_{i}} \right|_{p} = \mathbf{0} c i ∂ x i ∂ p = 0 , if for all i i i , c i = 0 c_{i} = 0 c i = 0 holds, then it is linearly independent. By substituting any x j x_{j} x j for 1 ≤ j ≤ n 1 \le j \le n 1 ≤ j ≤ n ,
0 = 0 ( x j ) = c i ∂ ∂ x i ∣ p x j = c i δ i j = c j
0 = \mathbf{0}(x_{j}) = c_{i}\left. \dfrac{\partial }{\partial x_{i}} \right|_{p} x_{j} = c_{i}\delta_{ij} = c_{j}
0 = 0 ( x j ) = c i ∂ x i ∂ p x j = c i δ ij = c j
Therefore, for all j j j , c j = 0 c_{j} = 0 c j = 0 holds, and no other solution exists. Hence, B \mathcal{B} B is linearly independent.
Part 2. Generation
Let’s denote f ∈ D f \in \mathcal{D} f ∈ D , a = x − 1 ( p ) \mathbf{a} = \mathbf{x}^{-1} (p) a = x − 1 ( p ) , F = f ∘ x F = f \circ \mathbf{x} F = f ∘ x . Then F : R n → R F : \mathbb{R}^{n} \to \mathbb{R} F : R n → R holds.
Taylor’s theorem for multivariable functions
F ( x ) = F ( a ) + ∑ i ∂ F ∂ x i ( a ) ( x i − a i ) + ∑ i , j h i j ( x ) ( x i − a i ) ( x j − a j )
F(\mathbf{x}) = F(\mathbf{a}) + \sum_{i} \dfrac{\partial F}{\partial x_{i}}(\mathbf{a})(x_{i} - a_{i}) + \sum_{i,j}h_{ij}(\mathbf{x})(x_{i} - a_{i}) (x_{j} - a_{j})
F ( x ) = F ( a ) + i ∑ ∂ x i ∂ F ( a ) ( x i − a i ) + i , j ∑ h ij ( x ) ( x i − a i ) ( x j − a j )
Applying the above Taylor’s theorem to F F F , the following holds. For m ∈ M m \in M m ∈ M ,
f ( m ) = F ∘ x − 1 ( m ) = F ( x − 1 ( m ) ) = F ( a ) + ∑ i ∂ F ∂ u i ( a ) ( x i ( m ) − a i ) + ∑ i , j h i j ( x − 1 ( m ) ) ( x i ( m ) − a i ) ( x j ( m ) − a j ) = F ∘ x − 1 ( p ) + ∑ i ∂ F ∂ u i ( x − 1 ( p ) ) ( x i ( m ) − a i ) + ∑ h i j ( x − 1 ( m ) ) ( x i ( m ) − a i ) ( x j ( m ) − a j ) = f ( p ) + ∑ i ( ∂ ∂ x i ∣ p f ) ( x i ( m ) − a i ) + ∑ h i j ( x − 1 ( m ) ) ( x i ( m ) − a i ) ( x j ( m ) − a j )
\begin{align*}
f(m) =&\ F \circ \mathbf{x}^{-1}(m) = F ( \mathbf{x}^{-1}(m))
\\ =&\ F (\mathbf{a}) + \sum_{i} \dfrac{\partial F}{\partial u_{i}}(\mathbf{a})(x_{i}(m) - a_{i}) + \sum_{i,j}h_{ij}(\mathbf{x}^{-1}(m))(x_{i}(m) - a_{i}) (x_{j}(m) - a_{j})
\\ =&\ F \circ \mathbf{x}^{-1}(p) + \sum_{i} \frac{\partial F}{\partial u_{i}}(\mathbf{x}^{-1}(p)) \left(x_{i}(m)-a_{i}\right) +\sum h_{i j}(\mathbf{x}^{-1}(m))\left(x_{i}(m)-a_{i}\right)\left(x_{j}(m)-a_{j}\right)
\\ =&\ f(p) + \sum_{i} \left( \left.\frac{\partial }{\partial x_{i}}\right|_{p} f \right) \left(x_{i}(m)-a_{i}\right) +\sum h_{i j}(\mathbf{x}^{-1}(m))\left(x_{i}(m)-a_{i}\right)\left(x_{j}(m)-a_{j}\right)
\end{align*}
f ( m ) = = = = F ∘ x − 1 ( m ) = F ( x − 1 ( m )) F ( a ) + i ∑ ∂ u i ∂ F ( a ) ( x i ( m ) − a i ) + i , j ∑ h ij ( x − 1 ( m )) ( x i ( m ) − a i ) ( x j ( m ) − a j ) F ∘ x − 1 ( p ) + i ∑ ∂ u i ∂ F ( x − 1 ( p )) ( x i ( m ) − a i ) + ∑ h ij ( x − 1 ( m )) ( x i ( m ) − a i ) ( x j ( m ) − a j ) f ( p ) + i ∑ ( ∂ x i ∂ p f ) ( x i ( m ) − a i ) + ∑ h ij ( x − 1 ( m )) ( x i ( m ) − a i ) ( x j ( m ) − a j )
Therefore, f f f is the following mapping:
f = f ( p ) + ∑ i ( ∂ ∂ x i ∣ p f ) ( x i − a i ) + ∑ ( h i j ∘ x − 1 ) ( x i − a i ) ( x j − a j )
f = f(p) + \sum_{i} \left( \left.\frac{\partial }{\partial x_{i}}\right|_{p} f \right) \left(x_{i}-a_{i}\right) +\sum (h_{i j} \circ \mathbf{x}^{-1})\left(x_{i}-a_{i}\right)\left(x_{j}-a_{j}\right)
f = f ( p ) + i ∑ ( ∂ x i ∂ p f ) ( x i − a i ) + ∑ ( h ij ∘ x − 1 ) ( x i − a i ) ( x j − a j )
When applied to the tangent vector X \mathbf{X} X ,
X ( f ) = X ( f ( p ) ) + ∑ i ( ∂ ∂ x i ∣ p f ) X ( x i − a i ) + ∑ X [ ( h i j ∘ x − 1 ) ( x i − a i ) ( x j − a j ) ]
\mathbf{X}(f) = \mathbf{X}(f(p)) + \sum_{i} \left( \left.\frac{\partial }{\partial x_{i}}\right|_{p} f \right) \mathbf{X}\left(x_{i}-a_{i}\right) +\sum \mathbf{X}\left[ (h_{i j} \circ \mathbf{x}^{-1})\left(x_{i}-a_{i}\right)\left(x_{j}-a_{j}\right) \right]
X ( f ) = X ( f ( p )) + i ∑ ( ∂ x i ∂ p f ) X ( x i − a i ) + ∑ X [ ( h ij ∘ x − 1 ) ( x i − a i ) ( x j − a j ) ]
Since the tangent vector is defined as a differential operator, for the constant function c c c , X ( c ) = 0 \mathbf{X}(c) = 0 X ( c ) = 0 holds. Therefore, the first term in the equation above is 0 0 0 .
X p ( f g ) = f ( p ) X p ( g ) + g ( p ) X p ( f )
\mathbf{X}_{p}(fg) = f(p)\mathbf{X}_{p}(g) + g(p)\mathbf{X}_{p}(f)
X p ( f g ) = f ( p ) X p ( g ) + g ( p ) X p ( f )
Therefore, if f ( p ) = g ( p ) = 0 f(p)=g(p)=0 f ( p ) = g ( p ) = 0 ,
X p ( f g ) = 0
\mathbf{X}_{p}(fg) = 0
X p ( f g ) = 0
Also, by setting f = ( h i j ∘ x − 1 ) ( x i − a i ) f = (h_{i j} \circ \mathbf{x}^{-1})\left(x_{i}-a_{i}\right) f = ( h ij ∘ x − 1 ) ( x i − a i ) , g = ( x j − a j ) g=\left(x_{j}-a_{j}\right) g = ( x j − a j ) , and applying the above lemma, x i ( p ) = a i x_{i}(p) = a_{i} x i ( p ) = a i holds, so the third term is also concluded to be 0 0 0 . Thus, the following is obtained.
X ( f ) = ∑ i ( ∂ ∂ x i ∣ p f ) X ( x i − a i ) = ∑ i ( ∂ ∂ x i ∣ p f ) ( X ( x i ) − X ( a i ) ) = ∑ i ( ∂ ∂ x i ∣ p f ) X ( x i ) = ∑ i X ( x i ) ∂ ∂ x i ∣ p f
\begin{aligned}
\mathbf{X}(f) =&\ \sum_{i} \left( \left.\frac{\partial }{\partial x_{i}}\right|_{p} f \right) \mathbf{X}\left(x_{i}-a_{i}\right)
\\ =&\ \sum_{i} \left( \left.\frac{\partial }{\partial x_{i}}\right|_{p} f \right) \left(\mathbf{X}(x_{i}) - \mathbf{X}(a_{i})\right)
\\ =&\ \sum_{i} \left( \left.\frac{\partial }{\partial x_{i}}\right|_{p} f \right) \mathbf{X}(x_{i})
\\ =&\ \sum_{i} \mathbf{X}(x_{i}) \left.\frac{\partial }{\partial x_{i}}\right|_{p} f
\end{aligned}
X ( f ) = = = = i ∑ ( ∂ x i ∂ p f ) X ( x i − a i ) i ∑ ( ∂ x i ∂ p f ) ( X ( x i ) − X ( a i ) ) i ∑ ( ∂ x i ∂ p f ) X ( x i ) i ∑ X ( x i ) ∂ x i ∂ p f
⟹ X = ∑ i X ( x i ) ∂ ∂ x i ∣ p
\implies \mathbf{X} = \sum_{i} \mathbf{X}(x_{i}) \left.\frac{\partial }{\partial x_{i}}\right|_{p}
⟹ X = i ∑ X ( x i ) ∂ x i ∂ p
Therefore, since any X \mathbf{X} X can be expressed as a linear combination of B \mathcal{B} B , T p M T_{p}M T p M is generated by B \mathcal{B} B .
■