Taylor's Theorem for Multivariable Functions
📂Vector AnalysisTaylor's Theorem for Multivariable Functions
Theorem
Let f:Rn→R be Ck function, and call it a=(a1,…,an)∈Rn. Then, there exists Ck−2 function hij that satisfies the following.
f(x)=f(a)+i∑(xi−ai)∂xi∂f(a)+i,j∑hij(x)(xi−ai)(xj−aj)
Description
It generalizes the Taylor theorem to functions of several variables.
second-order
f(x)=f(a)+i=1∑n(xi−ai)∂xi∂f(a)+2!1i,j=1∑n(xi−ai)2∂xi∂xj∂2f(a)+Remainder=f(a)+(x−a)T∇f(a)+2!1(x−a)T(H(a))(x−a)+Remainder
Here, ∇f is the f gradient, and H is the Hessian of f.
For the remainder term, the following form is also usefully employed.
f(x+p)=f(x)+pT∇f(x+tp)for some t∈(0,1)
f(x+p)=f(x)+pT∇f(x)+2!1pTH(x+tp)pfor some t∈(0,1)
f(x+p)=f(x)+∫01pT∇f(x+tp)dt
Proof
f(x)−f(a)=== ∫01dtd[f(t(x−a)+a)]dt ∫01(i∑∂xi∂f(t(x−a)+a)(xi−ai))dt i∑(xi−ai)∫01(∂xi∂f(t(x−a)+a))dtby \href
Let the integral part be denoted as gi(x). If we denote gi(x)=∫01(∂xi∂f(t(x−a)+a))dt,
f(x)−f(a)=i∑(xi−ai)∫01(∂xi∂f(t(x−a)+a))dt=i∑gi(x)(xi−ai)
The value of gi(a) is as follows.
gi(a)=∫01∂xi∂f(t(a−a)+a)dt=∫01∂xi∂f(a)dt=∂xi∂f(a)
Then, using the same method that led to (1), we can obtain the following equation.
gi(x)−gi(a)=j∑hij(x)(xj−aj)
Now, summarizing,
f(x)==== f(a)+i∑gi(x)(xi−ai) f(a)+i∑(gi(a)+j∑hij(x)(xj−aj))(xi−ai) f(a)+i∑gi(a)(xi−ai)+i,j∑hij(x)(xi−ai)(xj−aj) f(a)+i∑∂xi∂f(a)(xi−ai)+i,j∑hij(x)(xi−ai)(xj−aj)
■
See Also