logo

Specific Examples of Calculations Using the Riemann Metric 📂Geometry

Specific Examples of Calculations Using the Riemann Metric

Notation

Let’s say we have coordinates for (u,v)(u,v) as UU on a simple surface x:UR3\mathbf{x} : U \to \mathbb{R}^{3}.

x1:=xuandx2:=xv \mathbf{x}_{1} := \dfrac{\partial \mathbf{x}}{\partial u}\quad \text{and} \quad \mathbf{x}_{2} := \dfrac{\partial \mathbf{x}}{\partial v}

Let’s represent the coefficients of the Riemannian metric as follows.

gij= xi,xjg11= x1,x1=Eg12= g21=x1,x2=Fg22= x2,x2=G \begin{align*} g_{ij} =&\ \left\langle \mathbf{x}_{i}, \mathbf{x}_{j} \right\rangle \\ g_{11} =&\ \left\langle \mathbf{x}_{1}, \mathbf{x}_{1} \right\rangle = E \\ g_{12} =&\ g_{21} = \left\langle \mathbf{x}_{1}, \mathbf{x}_{2} \right\rangle = F \\ g_{22} =&\ \left\langle \mathbf{x}_{2}, \mathbf{x}_{2} \right\rangle = G \end{align*}

Example

Length of a Curve

Let’s say U={(u,v):u2+v2<1}U = \left\{ (u,v) : u^{2} + v^{2} \lt 1 \right\}. Assume a simple surface x:UR3\mathbf{x} : U \to \mathbb{R}^{3} is given as the following hemisphere.

x(u,v)=(u,v,1u2v2) \mathbf{x}(u,v) = (u, v, \sqrt{1-u^{2}-v^{2}})

1.PNG

Then

xu=x1=(1,0,u1u2v2)andxv=x2=(0,1,v1u2v2) \mathbf{x}_{u} = \mathbf{x}_{1} = \left( 1, 0, \dfrac{-u}{\sqrt{1-u^{2}-v^{2}}} \right) \quad \text{and} \quad \mathbf{x}_{v} = \mathbf{x}_{2} = \left( 0, 1, \dfrac{-v}{\sqrt{1-u^{2}-v^{2}}} \right)

And let’s say u,vu, v is as follows.

α1(t)=u(t)=tandα2(t)=v(t)=t2 \alpha_{1}(t) = u(t) = t \quad \text{and} \quad \alpha_{2}(t) = v(t) = t^{2}

Then, the path in each region according to 0<t<5120 \lt t \lt \sqrt{\dfrac{\sqrt{5}-1}{2}} is shown as follows.

2.PNG

1.gif

The formula for calculating the length of the blue curve on the hemisphere is as follows.

abgijαiαjdt=abE(u)2+2Fuv+G(v)2dt \int_{a}^{b} \sqrt{ g_{ij} \alpha_{i}^{\prime} \alpha_{j}^{\prime} } dt = \int_{a}^{b} \sqrt{ E(u^{\prime})^{2} + 2F u^{\prime} v^{\prime} + G(v^{\prime})^{2}}dt

Calculating each gives the following.

u=1andv=2t u^{\prime} = 1 \quad \text{and} \quad v^{\prime} = 2t

E= g11=x1,x1=1+u21u2v2=1v21u2v2=1t41t2t4F= g12=x1,x2=uv1u2v2=t31t2t4G= g22=x2,x2=1+v21u2v2=1u21u2v2=1t21t2t4 \begin{align*} E =&\ g_{11} = \left\langle \mathbf{x}_{1}, \mathbf{x}_{1} \right\rangle = 1 + \dfrac{u^{2}}{1-u^{2}-v^{2}} = \dfrac{1-v^{2}}{1-u^{2}-v^{2}} = \dfrac{1-t^{4}}{1-t^{2}-t^{4}} \\ F =&\ g_{12} = \left\langle \mathbf{x}_{1}, \mathbf{x}_{2} \right\rangle = \dfrac{uv}{1-u^{2}-v^{2}} = \dfrac{t^{3}}{1-t^{2}-t^{4}} \\ G =&\ g_{22} = \left\langle \mathbf{x}_{2}, \mathbf{x}_{2} \right\rangle = 1 + \dfrac{v^{2}}{1-u^{2}-v^{2}} = \dfrac{1-u^{2}}{1-u^{2}-v^{2}} = \dfrac{1-t^{2}}{1-t^{2}-t^{4}} \end{align*}

Therefore, the length of the curve is as follows.

0(51)/2E(u)2+2Fuv+G(v)2dt= 0(51)/21t41t2t4(1)2+2t31t2t412t+1t21t2t4(2t)2dt= 0(51)/2t4+4t2+11t2t4dt \begin{align*} & \int_{0}^{\sqrt{(\sqrt{5}-1) / 2}} \sqrt{ E(u^{\prime})^{2} + 2F u^{\prime} v^{\prime} + G(v^{\prime})^{2}}dt \\ =&\ \int_{0}^{\sqrt{(\sqrt{5}-1) / 2}} \sqrt{ \dfrac{1-t^{4}}{1-t^{2}-t^{4}}(1)^{2} + 2\dfrac{t^{3}}{1-t^{2}-t^{4}} \cdot 1 \cdot 2t + \dfrac{1-t^{2}}{1-t^{2}-t^{4}}(2t)^{2}}dt \\ =&\ \int_{0}^{\sqrt{(\sqrt{5}-1) / 2}} \sqrt{ \dfrac{-t^{4} + 4t^{2} +1}{1-t^{2}-t^{4}}}dt \end{align*}

Area of a Surface

In the same situation, let’s say Q={(u,v)U:0u,v<1}Q= \left\{ (u,v) \in U : 0\le u,v \lt 1 \right\}. Converting u,vu, v to polar coordinates, since u=rcosθ,v=rsinθu = r\cos \theta, v = r\sin \theta,

xu=x1=(1,0,u1u2v2)=(1,0,rcosθ1r2)xv=x2=(0,1,v1u2v2)=(1,0,rsinθ1r2) \mathbf{x}_{u} = \mathbf{x}_{1} = \left( 1, 0, \dfrac{-u}{\sqrt{1-u^{2}-v^{2}}} \right) = \left( 1, 0, \dfrac{-r\cos\theta}{\sqrt{1-r^{2}}} \right) \\ \mathbf{x}_{v} = \mathbf{x}_{2} = \left( 0, 1, \dfrac{-v}{\sqrt{1-u^{2}-v^{2}}} \right) = \left( 1, 0, \dfrac{-r\sin\theta}{\sqrt{1-r^{2}}} \right)

E= g11=x1,x1=1v21u2v2=1r2sin2θ1r2F= g12=x1,x2=r2cosθsinθ1r2G= g22=x2,x2=1u21u2v2=1r2cos2θ1r2 \begin{align*} E =&\ g_{11} = \left\langle \mathbf{x}_{1}, \mathbf{x}_{1} \right\rangle = \dfrac{1-v^{2}}{1-u^{2}-v^{2}} = \dfrac{1-r^{2}\sin^{2}\theta}{1-r^{2}} \\ F =&\ g_{12} = \left\langle \mathbf{x}_{1}, \mathbf{x}_{2} \right\rangle = \dfrac{r^{2}\cos\theta \sin\theta}{1-r^{2}} \\ G =&\ g_{22} = \left\langle \mathbf{x}_{2}, \mathbf{x}_{2} \right\rangle = \dfrac{1-u^{2}}{1-u^{2}-v^{2}} = \dfrac{1-r^{2}\cos^{2}\theta}{1-r^{2}} \end{align*}

The formula for calculating the area of region R=x(Q)R = \mathbf{x}(Q) on the surface is as follows.

Qgdudv=Qx1×x2dudv=QEGF2dudv \iint _{Q} \sqrt{g} du dv = \iint _{Q} \left| \mathbf{x}_{1} \times \mathbf{x}_{2} \right| du dv = \iint _{Q} \sqrt{EG-F^{2}} du dv

Since RR corresponds to the region of 18\dfrac{1}{8} on the sphere, the integral value should be 4π8=π2\dfrac{4\pi}{8}=\dfrac{\pi}{2}. When converting to polar coordinates, the Jacobian is rr, so dudv=rdrdθdudv=rdrd\theta is,

QEGF2dudv= θ=0π/2r=01EGF2rdrdθ= θ=0π/2r=01(1r2cos2θ)(1r2sin2θ)r4cos2θsin2θ1r2rdrdθ= θ=0π/2r=01r2cos2θr2sin2θ+11r2rdrdθ= θ=0π/2dθr=011r21r2rdr= π2r=01r1r2dr= π2[1r2]01= π2 \begin{align*} & \iint _{Q} \sqrt{EG-F^{2}} du dv \\ =&\ \int \limits_{\theta = 0}^{\pi / 2} \int \limits_{r=0}^{1} \sqrt{EG-F^{2}} rdr d\theta \\ =&\ \int \limits_{\theta = 0}^{\pi / 2} \int \limits_{r=0}^{1} \dfrac{\sqrt{(1-r^{2}\cos^{2}\theta)(1-r^{2}\sin^{2}\theta)-r^{4}\cos^{2}\theta \sin^{2}\theta}}{1-r^{2}} rdr d\theta \\ =&\ \int \limits_{\theta = 0}^{\pi / 2} \int \limits_{r=0}^{1} \dfrac{\sqrt{-r^{2}\cos^{2}\theta - r^{2}\sin^{2}\theta + 1}}{1-r^{2}} rdr d\theta \\ =&\ \int _{\theta = 0}^{\pi / 2}d\theta \int _{r=0}^{1} \dfrac{\sqrt{1- r^{2}}}{1-r^{2}} rdr \\ =&\ \dfrac{\pi}{2} \int _{r=0}^{1} \dfrac{r}{\sqrt{1-r^{2}}}dr \\ =&\ \dfrac{\pi}{2} \left[ -\sqrt{1-r^{2}} \right]_{0}^{1} \\ =&\ \dfrac{\pi}{2} \end{align*}