logo

Inverse Holder's Inequality: A Sufficient Condition for Lp Functions 📂Lebesgue Spaces

Inverse Holder's Inequality: A Sufficient Condition for Lp Functions

Theorem1

Let’s consider ΩRn\Omega \subset \mathbb{R}^{n} as an open set. The necessary and sufficient condition for the measurable function uu to be included in the LpL^{p} space is

sup{Ωu(x)v(x)dx:v(x)0 on Ω,vp1}< \sup \left\{ \int_{\Omega} \left| u(x) \right| v(x) dx : v(x) \ge 0 \text{ on } \Omega, \left\| v \right\|_{p^{\prime}} \le 1 \right\} \lt \infty

Furthermore, the above supremum is as follows up\left\| u \right\|_{p}. Here, p=pp1p^{\prime} = \dfrac{p}{p-1} is the Hölder conjugate.

Explanation

Assuming 1<p<1 \lt p \lt \infty and vLpv \in L^{p^{\prime}}, then the Hölder’s inequality tells us that if uLpu \in L^{p}, then uvL1uv \in L^{1}.

uLp(Ω)    Ωu(x)v(x)dxupvp u\in L^{p}(\Omega) \implies \int_{\Omega} \left| u(x) v(x) \right| dx \le \left\| u \right\|_{p} \left\| v \right\|_{p^{\prime}}

Conversely, the theorem implies that if uvL1uv \in L^{1}, then uLpu \in L^{p}.

uLp(Ω)    sup{Ωu(x)v(x)dx:v(x)0 on Ω,vp1}< u\in L^{p}(\Omega) \impliedby \sup \left\{ \int_{\Omega} \left| u(x) \right| v(x) dx : v(x) \ge 0 \text{ on } \Omega, \left\| v \right\|_{p^{\prime}} \le 1 \right\} \lt \infty

Proof

uLp(Ω)    sup{Ωu(x)v(x)dx:v(x)0 on Ω,vp1}< u \in L^{p}(\Omega) \iff \sup \left\{ \int_{\Omega} \left| u(x) \right| v(x) dx : v(x) \ge 0 \text{ on } \Omega, \left\| v \right\|_{p^{\prime}} \le 1 \right\} \lt \infty

  • (    )(\implies)

    The case of up=0\left\| u \right\|_{p} = 0 is trivial. Let’s assume 0<up<0 \lt \left\| u \right\|_{p} \lt \infty. Applying Hölder’s inequality for vLpv \in L^{p^{\prime}} where 0v0 \le v and vq1\left\| v \right\|_{q} \le 1 gives,

    Ωu(x)v(x)dxupvpup< \int_{\Omega} \left| u(x) \right| v(x) dx \le \left\| u \right\|_{p} \left\| v \right\|_{p^{\prime}} \le \left\| u \right\|_{p} \lt \infty

    Also, setting v=(uup)p/pv = \left( \dfrac{ \left| u \right| }{ \left\| u \right\|_{p} } \right)^{p/p^{\prime}}, we have vp=1\left\| v \right\|_{p^{\prime}} = 1 and equality holds. Since p/p=pp1p=p1p/p^{\prime} = p \dfrac{p-1}{p} = p-1,

    Ωu(x)v(x)dx= Ωu(x)u(x)p/pupp/pdx= Ωu(x)u(x)p1upp1dx= 1upp1Ωu(x)pdx= 1upp1upp= up \begin{align*} \int_{\Omega} \left| u(x) \right| v(x) dx =&\ \int_{\Omega} \left| u(x) \right| \dfrac{ \left| u(x) \right|^{p/p^{\prime}} }{ \left\| u \right\|_{p}^{p/p^{\prime}} } dx \\ =&\ \int_{\Omega} \left| u(x) \right| \dfrac{ \left| u(x) \right|^{p-1} }{ \left\| u \right\|_{p}^{p-1} } dx \\ =&\ \dfrac{1}{ \left\| u \right\|_{p}^{p-1} } \int_{\Omega} \left| u(x) \right|^{p} dx \\ =&\ \dfrac{1}{ \left\| u \right\|_{p}^{p-1} } \left\| u \right\|_{p}^{p} \\ =&\ \left\| u \right\|_{p} \end{align*}

    Hence,

    sup{Ωu(x)v(x)dx:v(x)0 on Ω,vp1}=up< \sup \left\{ \int_{\Omega} \left| u(x) \right| v(x) dx : v(x) \ge 0 \text{ on } \Omega, \left\| v \right\|_{p^{\prime}} \le 1 \right\} = \left\| u \right\|_{p} \lt \infty

  • (    )(\impliedby)

    Prove by contraposition. That is, we aim to show the following:

    up=    sup{Ωu(x)v(x)dx:v(x)0 on Ω,vp1}= \left\| u \right\|_{p} = \infty \implies \sup \left\{ \int_{\Omega} \left| u(x) \right| v(x) dx : v(x) \ge 0 \text{ on } \Omega, \left\| v \right\|_{p^{\prime}} \le 1 \right\} = \infty


    Assume up=\left\| u \right\|_{p} = \infty. Then, for some simple functions sjs_{j} forming an increasing sequence {sj}\left\{ s_{j} \right\} that satisfies Ω\Omega on top, we can think of 0sj(x)u(x)0 \le s_{j}(x) \le \left| u(x) \right|. This satisfies limjsjp=\lim \limits_{j \to \infty} \left\| s_{j} \right\|_{p} = \infty. Now, let’s set vj=(sjsjp)p/pv_{j} = \left( \dfrac{ \left| s_{j} \right| }{ \left\| s_{j} \right\|_{p} } \right)^{p/p^{\prime}}. Then vj0v_{j} \ge 0 and the following vjp=1\left\| v_{j} \right\|_{p^{\prime}} = 1 is satisfied.

    vjpp= Ω(sjsjp)pdx= 1sjppΩsjpdx= 1 \begin{align*} \left\| v_{j} \right\|_{p^{\prime}}^{p^{\prime}} =&\ \int_{\Omega} \left( \dfrac{ \left| s_{j} \right| }{ \left\| s_{j} \right\|_{p} } \right)^{p} dx \\ =&\ \dfrac{1}{ \left\| s_{j} \right\|_{p}^{p} } \int_{\Omega} \left| s_{j} \right|^{p} dx \\ =&\ 1 \end{align*}

    Moreover, since p/p=pp1p=p1p/p^{\prime} = p \dfrac{p-1}{p} = p-1, the following equation holds.

    Ωsj(x)vj(x)dx=1sjpp1Ωsj(x)pdx=sjp \int_{\Omega} s_{j}(x) v_{j}(x) dx = \dfrac{1}{\left\| s_{j} \right\|_{p}^{p-1}}\int_{\Omega} \left| s_{j}(x) \right|^{p} dx = \left\| s_{j} \right\|_{p}

    Then, the following also holds.

    Ωu(x)vj(x)dxΩsj(x)vj(x)dx=sjp \int_{\Omega} \left| u(x) \right| v_{j}(x) dx \ge \int_{\Omega} s_{j}(x) v_{j}(x) dx = \left\| s_{j} \right\|_{p}

    Therefore, since limjsjp=\lim \limits_{j \to \infty} \left\| s_{j} \right\|_{p} = \infty,

    sup{Ωu(x)v(x)dx:v(x)0 on Ω,vp1}= \sup \left\{ \int_{\Omega} \left| u(x) \right| v(x) dx : v(x) \ge 0 \text{ on } \Omega, \left\| v \right\|_{p^{\prime}} \le 1 \right\} = \infty


  1. Robert A. Adams and John J. F. Foutnier, Sobolev Space (2nd Edition, 2003), p25 ↩︎