logo

Inverse Holder's Inequality: A Sufficient Condition for Lp Functions 📂Lebesgue Spaces

Inverse Holder's Inequality: A Sufficient Condition for Lp Functions

Theorem1

Let’s consider $\Omega \subset \mathbb{R}^{n}$ as an open set. The necessary and sufficient condition for the measurable function $u$ to be included in the $L^{p}$ space is

$$ \sup \left\{ \int_{\Omega} \left| u(x) \right| v(x) dx : v(x) \ge 0 \text{ on } \Omega, \left\| v \right\|_{p^{\prime}} \le 1 \right\} \lt \infty $$

Furthermore, the above supremum is as follows $\left\| u \right\|_{p}$. Here, $p^{\prime} = \dfrac{p}{p-1}$ is the Hölder conjugate.

Explanation

Assuming $1 \lt p \lt \infty$ and $v \in L^{p^{\prime}}$, then the Hölder’s inequality tells us that if $u \in L^{p}$, then $uv \in L^{1}$.

$$ u\in L^{p}(\Omega) \implies \int_{\Omega} \left| u(x) v(x) \right| dx \le \left\| u \right\|_{p} \left\| v \right\|_{p^{\prime}} $$

Conversely, the theorem implies that if $uv \in L^{1}$, then $u \in L^{p}$.

$$ u\in L^{p}(\Omega) \impliedby \sup \left\{ \int_{\Omega} \left| u(x) \right| v(x) dx : v(x) \ge 0 \text{ on } \Omega, \left\| v \right\|_{p^{\prime}} \le 1 \right\} \lt \infty $$

Proof

$$ u \in L^{p}(\Omega) \iff \sup \left\{ \int_{\Omega} \left| u(x) \right| v(x) dx : v(x) \ge 0 \text{ on } \Omega, \left\| v \right\|_{p^{\prime}} \le 1 \right\} \lt \infty $$

  • $(\implies)$

    The case of $\left\| u \right\|_{p} = 0$ is trivial. Let’s assume $0 \lt \left\| u \right\|_{p} \lt \infty$. Applying Hölder’s inequality for $v \in L^{p^{\prime}}$ where $0 \le v$ and $\left\| v \right\|_{q} \le 1$ gives,

    $$ \int_{\Omega} \left| u(x) \right| v(x) dx \le \left\| u \right\|_{p} \left\| v \right\|_{p^{\prime}} \le \left\| u \right\|_{p} \lt \infty $$

    Also, setting $v = \left( \dfrac{ \left| u \right| }{ \left\| u \right\|_{p} } \right)^{p/p^{\prime}}$, we have $\left\| v \right\|_{p^{\prime}} = 1$ and equality holds. Since $p/p^{\prime} = p \dfrac{p-1}{p} = p-1$,

    $$ \begin{align*} \int_{\Omega} \left| u(x) \right| v(x) dx =&\ \int_{\Omega} \left| u(x) \right| \dfrac{ \left| u(x) \right|^{p/p^{\prime}} }{ \left\| u \right\|_{p}^{p/p^{\prime}} } dx \\ =&\ \int_{\Omega} \left| u(x) \right| \dfrac{ \left| u(x) \right|^{p-1} }{ \left\| u \right\|_{p}^{p-1} } dx \\ =&\ \dfrac{1}{ \left\| u \right\|_{p}^{p-1} } \int_{\Omega} \left| u(x) \right|^{p} dx \\ =&\ \dfrac{1}{ \left\| u \right\|_{p}^{p-1} } \left\| u \right\|_{p}^{p} \\ =&\ \left\| u \right\|_{p} \end{align*} $$

    Hence,

    $$ \sup \left\{ \int_{\Omega} \left| u(x) \right| v(x) dx : v(x) \ge 0 \text{ on } \Omega, \left\| v \right\|_{p^{\prime}} \le 1 \right\} = \left\| u \right\|_{p} \lt \infty $$

  • $(\impliedby)$

    Prove by contraposition. That is, we aim to show the following:

    $$ \left\| u \right\|_{p} = \infty \implies \sup \left\{ \int_{\Omega} \left| u(x) \right| v(x) dx : v(x) \ge 0 \text{ on } \Omega, \left\| v \right\|_{p^{\prime}} \le 1 \right\} = \infty $$


    Assume $\left\| u \right\|_{p} = \infty$. Then, for some simple functions $s_{j}$ forming an increasing sequence $\left\{ s_{j} \right\}$ that satisfies $\Omega$ on top, we can think of $0 \le s_{j}(x) \le \left| u(x) \right|$. This satisfies $\lim \limits_{j \to \infty} \left\| s_{j} \right\|_{p} = \infty$. Now, let’s set $v_{j} = \left( \dfrac{ \left| s_{j} \right| }{ \left\| s_{j} \right\|_{p} } \right)^{p/p^{\prime}}$. Then $v_{j} \ge 0$ and the following $\left\| v_{j} \right\|_{p^{\prime}} = 1$ is satisfied.

    $$ \begin{align*} \left\| v_{j} \right\|_{p^{\prime}}^{p^{\prime}} =&\ \int_{\Omega} \left( \dfrac{ \left| s_{j} \right| }{ \left\| s_{j} \right\|_{p} } \right)^{p} dx \\ =&\ \dfrac{1}{ \left\| s_{j} \right\|_{p}^{p} } \int_{\Omega} \left| s_{j} \right|^{p} dx \\ =&\ 1 \end{align*} $$

    Moreover, since $p/p^{\prime} = p \dfrac{p-1}{p} = p-1$, the following equation holds.

    $$ \int_{\Omega} s_{j}(x) v_{j}(x) dx = \dfrac{1}{\left\| s_{j} \right\|_{p}^{p-1}}\int_{\Omega} \left| s_{j}(x) \right|^{p} dx = \left\| s_{j} \right\|_{p} $$

    Then, the following also holds.

    $$ \int_{\Omega} \left| u(x) \right| v_{j}(x) dx \ge \int_{\Omega} s_{j}(x) v_{j}(x) dx = \left\| s_{j} \right\|_{p} $$

    Therefore, since $\lim \limits_{j \to \infty} \left\| s_{j} \right\|_{p} = \infty$,

    $$ \sup \left\{ \int_{\Omega} \left| u(x) \right| v(x) dx : v(x) \ge 0 \text{ on } \Omega, \left\| v \right\|_{p^{\prime}} \le 1 \right\} = \infty $$


  1. Robert A. Adams and John J. F. Foutnier, Sobolev Space (2nd Edition, 2003), p25 ↩︎