Various Formulas of Vector Integration Involving the Del Operator
Formulas1
Let’s designate $T, U$ as a scalar function, and $\mathbf{v}$ as a vector function. Then, the following equations hold:
$$ \begin{equation} \int_{\mathcal{V}} (\nabla T) d \tau = \oint_{\mathcal{S}} T d \mathbf{a} \end{equation} $$
$$ \begin{equation} \int_{\mathcal{V}} (\nabla \times \mathbf{v}) d \tau = - \oint_{\mathcal{S}} \mathbf{v} \times d \mathbf{a} \end{equation} $$
$$ \begin{equation} \int_{\mathcal{V}} \left[ T \nabla^{2} U + (\nabla T) \cdot (\nabla U) \right] d \tau = \oint_{\mathcal{S}} (T \nabla U) \cdot d \mathbf{a} \end{equation} $$
$$ \begin{equation} \int_{\mathcal{V}} \left( T \nabla^{2} U - U \nabla^{2} T \right) d \tau = \oint_{\mathcal{S}} \left( T \nabla U - U \nabla T \right) \cdot d \mathbf{a} \end{equation} $$
$$ \begin{equation} \int_{\mathcal{S}} \nabla T \times d \mathbf{a} = - \oint_{\mathcal{P}} T d \mathbf{l} \end{equation} $$
Description
Proving the above formulas is Exercise 1.61 in the 4th edition of Griffiths’ Electrodynamics.
$(3), (4)$ is also known as Green’s theorem.
Proof
In all the following proofs, $\mathbf{c}$ represents a constant vector.
(1)
$$ \int_{\mathcal{V}} (\nabla \cdot \mathbf{v}) d \tau = \oint_{\mathcal{S}} \mathbf{v} \cdot d \mathbf{a} $$
Let’s substitute $\mathbf{v} = T\mathbf{c}$ into the divergence theorem.
$$ \int_{\mathcal{V}} \nabla \cdot (T\mathbf{c}) d \tau = \oint_{\mathcal{S}} (T \mathbf{c}) \cdot d \mathbf{a} $$
Then, by the product rule $\nabla \cdot (f\mathbf{A}) = f(\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot (\nabla f)$, the LHS can be rewritten as follows.
$$ \int_{\mathcal{V}} T(\nabla \cdot \mathbf{c}) d \tau + \int_{\mathcal{V}} \mathbf{c} \cdot (\nabla T) d \tau = \oint_{\mathcal{S}} (T \mathbf{c}) \cdot d \mathbf{a} $$
Since $\mathbf{c}$ is a constant vector in the first term on the LHS, it results in $\nabla \cdot \mathbf{c}=0$. Therefore,
$$ \begin{align*} \\ && \int_{\mathcal{V}} \mathbf{c} \cdot (\nabla T) d \tau =&\ \oint_{\mathcal{S}} (T \mathbf{c}) \cdot d \mathbf{a} \\ \implies && \mathbf{c} \cdot \int_{\mathcal{V}} (\nabla T) d \tau =&\ \mathbf{c} \cdot \oint_{\mathcal{S}} T d \mathbf{a} \\ \implies && \int_{\mathcal{V}} (\nabla T) d \tau =&\ \oint_{\mathcal{S}} T d \mathbf{a} \end{align*} $$
■
(2)
$$ \int_{\mathcal{V}} (\nabla \cdot \mathbf{v}) d \tau = \oint_{\mathcal{S}} \mathbf{v} \cdot d \mathbf{a} $$
Let’s substitute $\mathbf{v} = \mathbf{v} \times \mathbf{c}$ into the divergence theorem.
$$ \int_{\mathcal{V}} \nabla \cdot (\mathbf{v} \times \mathbf{c}) d \tau = \oint_{\mathcal{S}} (\mathbf{v} \times \mathbf{c}) \cdot d \mathbf{a} $$
Then, by the product rule $\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$, the LHS can be rewritten as follows.
$$ \int_{\mathcal{V}} \mathbf{c} \cdot (\nabla \times \mathbf{v}) d \tau - \int_{\mathcal{V}} \mathbf{v} \cdot (\nabla \times \mathbf{c}) d \tau = \oint_{\mathcal{S}} (\mathbf{v} \times \mathbf{c}) \cdot d \mathbf{a} $$
Since $\mathbf{c}$ is a constant vector in the second term on the LHS, it results in $\nabla \times \mathbf{c} = \mathbf{0}$. Therefore,
$$ \int_{\mathcal{V}} \mathbf{c} \cdot (\nabla \times \mathbf{v}) d \tau = \oint_{\mathcal{S}} (\mathbf{v} \times \mathbf{c}) \cdot d \mathbf{a} $$
Also, by the scalar triple product formula and properties of the cross product, the following holds.
$$ (\mathbf{v} \times \mathbf{c}) \cdot d \mathbf{a} = (d \mathbf{a} \times \mathbf{v}) \cdot \mathbf{c} = -( \mathbf{v} \times d \mathbf{a}) \cdot \mathbf{c} = - \mathbf{c} \cdot ( \mathbf{v} \times d \mathbf{a}) $$
Substituting it into the RHS of the previous equation results in
$$ \begin{align*} \\ && \int_{\mathcal{V}} \mathbf{c} \cdot (\nabla \times \mathbf{v}) d \tau =&\ - \oint_{\mathcal{S}} \mathbf{c} \cdot ( \mathbf{v} \times d \mathbf{a}) \\ \implies && \mathbf{c} \cdot \int_{\mathcal{V}} (\nabla \times \mathbf{v}) d \tau =&\ - \mathbf{c} \cdot \oint_{\mathcal{S}} \mathbf{v} \times d \mathbf{a} \\ \implies && \int_{\mathcal{V}} (\nabla \times \mathbf{v}) d \tau =&\ -\oint_{\mathcal{S}} \mathbf{v} \times d \mathbf{a} \end{align*} $$
■
(3)
$$ \int_{\mathcal{V}} (\nabla \cdot \mathbf{v}) d \tau = \oint_{\mathcal{S}} \mathbf{v} \cdot d \mathbf{a} $$
Let’s substitute $\mathbf{v} = T \nabla U$ into the divergence theorem.
$$ \int_{\mathcal{V}} \nabla \cdot (T \nabla U) d \tau = \oint_{\mathcal{S}} (T \nabla U) \cdot d \mathbf{a} $$
Then, by the product rule $\nabla \cdot (f\mathbf{A}) = f(\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot (\nabla f)$, the LHS can be rewritten as follows.
$$ \int_{\mathcal{V}} \left[ T \nabla \cdot (\nabla U) + \nabla U \cdot (\nabla T) \right] d \tau = \oint_{\mathcal{S}} (T \nabla U) \cdot d \mathbf{a} $$
The divergence of a gradient is the Laplacian $\nabla^{2} = \nabla \cdot \nabla$, therefore
$$ \int_{\mathcal{V}} \left[ T \nabla^{2} U + (\nabla T) \cdot (\nabla U) \right] d \tau = \oint_{\mathcal{S}} (T \nabla U) \cdot d \mathbf{a} $$
■
(4)
The equation $(3)$ can be written as follows:
$$ \int_{\mathcal{V}} (\nabla T) \cdot (\nabla U) d \tau = \oint_{\mathcal{S}} (T \nabla U) \cdot d \mathbf{a} - \int_{\mathcal{V}} T \nabla^{2} U d \tau $$
If we switch $T$ and $U$, it becomes:
$$ \int_{\mathcal{V}} (\nabla U) \cdot (\nabla T) d \tau = \oint_{\mathcal{S}} (U \nabla T) \cdot d \mathbf{a} - \int_{\mathcal{V}} U \nabla^{2} T d \tau $$
Subtracting one from the other gives us:
$$ 0 = \left( \oint_{\mathcal{S}} (T \nabla U) \cdot d \mathbf{a} - \int_{\mathcal{V}} T \nabla^{2} U d \tau \right) - \left( \oint_{\mathcal{S}} (U \nabla T) \cdot d \mathbf{a} - \int_{\mathcal{V}} U \nabla^{2} T d \tau \right) $$
Which simplifies to:
$$ \int_{\mathcal{V}} \left( T \nabla^{2} U - U \nabla^{2} T \right) d \tau = \oint_{\mathcal{S}} \left( T \nabla U - U \nabla T \right) \cdot d \mathbf{a} $$
■
(5)
$$ \int_{\mathcal{S}} (\nabla \times \mathbf{v} )\cdot d\mathbf{a} = \oint_{\mathcal{P}} \mathbf{v} \cdot d\mathbf{l} $$
Let’s substitute $\mathbf{v} = T \mathbf{c}$ into Stokes’ theorem.
$$ \int_{\mathcal{S}} \left[ \nabla \times (T \mathbf{c}) \right] \cdot d\mathbf{a} = \oint_{\mathcal{P}} (T \mathbf{c}) \cdot d\mathbf{l} $$
Then, by the product rule $\nabla \times (f\mathbf{A}) = f(\nabla \times \mathbf{A}) - \mathbf{A} \times (\nabla f)$, the LHS can be written as follows.
$$ \int_{\mathcal{S}} T (\nabla \times \mathbf{c}) \cdot d\mathbf{a} - \int_{\mathcal{S}} \left[ \mathbf{c} \times (\nabla T) \right] \cdot d\mathbf{a} = \oint_{\mathcal{P}} (T \mathbf{c}) \cdot d\mathbf{l} $$
Since $\mathbf{c}$ is a constant vector in the first term on the LHS, it results in $\nabla \times \mathbf{c} = \mathbf{0}$. Therefore,
$$ \int_{\mathcal{S}} \left[ \mathbf{c} \times (\nabla T) \right] \cdot d\mathbf{a} = - \oint_{\mathcal{P}} (T \mathbf{c}) \cdot d\mathbf{l} $$
Also, by the scalar triple product formula, the following holds.
$$ \left( \mathbf{c} \times \nabla T \right) \cdot d \mathbf{a} = \left( \nabla T \times d \mathbf{a} \right) \cdot \mathbf{c} $$
Therefore,
$$ \begin{align*} && \int_{\mathcal{S}} \left( \nabla T \times d \mathbf{a} \right) \cdot \mathbf{c} = - \oint_{\mathcal{P}} (T \mathbf{c}) \cdot d\mathbf{l} \\ \implies && \mathbf{c} \cdot \int_{\mathcal{S}} \left( \nabla T \times d \mathbf{a} \right) = - \mathbf{c} \cdot \oint_{\mathcal{P}} T d\mathbf{l} \\ \implies && \int_{\mathcal{S}} \left( \nabla T \times d \mathbf{a} \right) = - \oint_{\mathcal{P}} T d\mathbf{l} \end{align*} $$
■
David J. Griffiths, Introduction to Electrodynamics (4th Edition, 2014), p62 ↩︎