logo

Various Formulas of Vector Integration Involving the Del Operator 📂Mathematical Physics

Various Formulas of Vector Integration Involving the Del Operator

Formulas1

Let’s designate T,UT, U as a scalar function, and v\mathbf{v} as a vector function. Then, the following equations hold:

V(T)dτ=STda \begin{equation} \int_{\mathcal{V}} (\nabla T) d \tau = \oint_{\mathcal{S}} T d \mathbf{a} \end{equation}

V(×v)dτ=Sv×da \begin{equation} \int_{\mathcal{V}} (\nabla \times \mathbf{v}) d \tau = - \oint_{\mathcal{S}} \mathbf{v} \times d \mathbf{a} \end{equation}

V[T2U+(T)(U)]dτ=S(TU)da \begin{equation} \int_{\mathcal{V}} \left[ T \nabla^{2} U + (\nabla T) \cdot (\nabla U) \right] d \tau = \oint_{\mathcal{S}} (T \nabla U) \cdot d \mathbf{a} \end{equation}

V(T2UU2T)dτ=S(TUUT)da \begin{equation} \int_{\mathcal{V}} \left( T \nabla^{2} U - U \nabla^{2} T \right) d \tau = \oint_{\mathcal{S}} \left( T \nabla U - U \nabla T \right) \cdot d \mathbf{a} \end{equation}

ST×da=PTdl \begin{equation} \int_{\mathcal{S}} \nabla T \times d \mathbf{a} = - \oint_{\mathcal{P}} T d \mathbf{l} \end{equation}

Description

Proving the above formulas is Exercise 1.61 in the 4th edition of Griffiths’ Electrodynamics.

(3),(4)(3), (4) is also known as Green’s theorem.

Proof

In all the following proofs, c\mathbf{c} represents a constant vector.


(1)

Divergence theorem

V(v)dτ=Svda \int_{\mathcal{V}} (\nabla \cdot \mathbf{v}) d \tau = \oint_{\mathcal{S}} \mathbf{v} \cdot d \mathbf{a}

Let’s substitute v=Tc\mathbf{v} = T\mathbf{c} into the divergence theorem.

V(Tc)dτ=S(Tc)da \int_{\mathcal{V}} \nabla \cdot (T\mathbf{c}) d \tau = \oint_{\mathcal{S}} (T \mathbf{c}) \cdot d \mathbf{a}

Then, by the product rule (fA)=f(A)+A(f)\nabla \cdot (f\mathbf{A}) = f(\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot (\nabla f), the LHS can be rewritten as follows.

VT(c)dτ+Vc(T)dτ=S(Tc)da \int_{\mathcal{V}} T(\nabla \cdot \mathbf{c}) d \tau + \int_{\mathcal{V}} \mathbf{c} \cdot (\nabla T) d \tau = \oint_{\mathcal{S}} (T \mathbf{c}) \cdot d \mathbf{a}

Since c\mathbf{c} is a constant vector in the first term on the LHS, it results in c=0\nabla \cdot \mathbf{c}=0. Therefore,

Vc(T)dτ= S(Tc)da    cV(T)dτ= cSTda    V(T)dτ= STda \begin{align*} \\ && \int_{\mathcal{V}} \mathbf{c} \cdot (\nabla T) d \tau =&\ \oint_{\mathcal{S}} (T \mathbf{c}) \cdot d \mathbf{a} \\ \implies && \mathbf{c} \cdot \int_{\mathcal{V}} (\nabla T) d \tau =&\ \mathbf{c} \cdot \oint_{\mathcal{S}} T d \mathbf{a} \\ \implies && \int_{\mathcal{V}} (\nabla T) d \tau =&\ \oint_{\mathcal{S}} T d \mathbf{a} \end{align*}

(2)

Divergence theorem

V(v)dτ=Svda \int_{\mathcal{V}} (\nabla \cdot \mathbf{v}) d \tau = \oint_{\mathcal{S}} \mathbf{v} \cdot d \mathbf{a}

Let’s substitute v=v×c\mathbf{v} = \mathbf{v} \times \mathbf{c} into the divergence theorem.

V(v×c)dτ=S(v×c)da \int_{\mathcal{V}} \nabla \cdot (\mathbf{v} \times \mathbf{c}) d \tau = \oint_{\mathcal{S}} (\mathbf{v} \times \mathbf{c}) \cdot d \mathbf{a}

Then, by the product rule (A×B)=B(×A)A(×B)\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B}), the LHS can be rewritten as follows.

Vc(×v)dτVv(×c)dτ=S(v×c)da \int_{\mathcal{V}} \mathbf{c} \cdot (\nabla \times \mathbf{v}) d \tau - \int_{\mathcal{V}} \mathbf{v} \cdot (\nabla \times \mathbf{c}) d \tau = \oint_{\mathcal{S}} (\mathbf{v} \times \mathbf{c}) \cdot d \mathbf{a}

Since c\mathbf{c} is a constant vector in the second term on the LHS, it results in ×c=0\nabla \times \mathbf{c} = \mathbf{0}. Therefore,

Vc(×v)dτ=S(v×c)da \int_{\mathcal{V}} \mathbf{c} \cdot (\nabla \times \mathbf{v}) d \tau = \oint_{\mathcal{S}} (\mathbf{v} \times \mathbf{c}) \cdot d \mathbf{a}

Also, by the scalar triple product formula and properties of the cross product, the following holds.

(v×c)da=(da×v)c=(v×da)c=c(v×da) (\mathbf{v} \times \mathbf{c}) \cdot d \mathbf{a} = (d \mathbf{a} \times \mathbf{v}) \cdot \mathbf{c} = -( \mathbf{v} \times d \mathbf{a}) \cdot \mathbf{c} = - \mathbf{c} \cdot ( \mathbf{v} \times d \mathbf{a})

Substituting it into the RHS of the previous equation results in

Vc(×v)dτ= Sc(v×da)    cV(×v)dτ= cSv×da    V(×v)dτ= Sv×da \begin{align*} \\ && \int_{\mathcal{V}} \mathbf{c} \cdot (\nabla \times \mathbf{v}) d \tau =&\ - \oint_{\mathcal{S}} \mathbf{c} \cdot ( \mathbf{v} \times d \mathbf{a}) \\ \implies && \mathbf{c} \cdot \int_{\mathcal{V}} (\nabla \times \mathbf{v}) d \tau =&\ - \mathbf{c} \cdot \oint_{\mathcal{S}} \mathbf{v} \times d \mathbf{a} \\ \implies && \int_{\mathcal{V}} (\nabla \times \mathbf{v}) d \tau =&\ -\oint_{\mathcal{S}} \mathbf{v} \times d \mathbf{a} \end{align*}

(3)

Divergence theorem

V(v)dτ=Svda \int_{\mathcal{V}} (\nabla \cdot \mathbf{v}) d \tau = \oint_{\mathcal{S}} \mathbf{v} \cdot d \mathbf{a}

Let’s substitute v=TU\mathbf{v} = T \nabla U into the divergence theorem.

V(TU)dτ=S(TU)da \int_{\mathcal{V}} \nabla \cdot (T \nabla U) d \tau = \oint_{\mathcal{S}} (T \nabla U) \cdot d \mathbf{a}

Then, by the product rule (fA)=f(A)+A(f)\nabla \cdot (f\mathbf{A}) = f(\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot (\nabla f), the LHS can be rewritten as follows.

V[T(U)+U(T)]dτ=S(TU)da \int_{\mathcal{V}} \left[ T \nabla \cdot (\nabla U) + \nabla U \cdot (\nabla T) \right] d \tau = \oint_{\mathcal{S}} (T \nabla U) \cdot d \mathbf{a}

The divergence of a gradient is the Laplacian 2=\nabla^{2} = \nabla \cdot \nabla, therefore

V[T2U+(T)(U)]dτ=S(TU)da \int_{\mathcal{V}} \left[ T \nabla^{2} U + (\nabla T) \cdot (\nabla U) \right] d \tau = \oint_{\mathcal{S}} (T \nabla U) \cdot d \mathbf{a}

(4)

The equation (3)(3) can be written as follows:

V(T)(U)dτ=S(TU)daVT2Udτ \int_{\mathcal{V}} (\nabla T) \cdot (\nabla U) d \tau = \oint_{\mathcal{S}} (T \nabla U) \cdot d \mathbf{a} - \int_{\mathcal{V}} T \nabla^{2} U d \tau

If we switch TT and UU, it becomes:

V(U)(T)dτ=S(UT)daVU2Tdτ \int_{\mathcal{V}} (\nabla U) \cdot (\nabla T) d \tau = \oint_{\mathcal{S}} (U \nabla T) \cdot d \mathbf{a} - \int_{\mathcal{V}} U \nabla^{2} T d \tau

Subtracting one from the other gives us:

0=(S(TU)daVT2Udτ)(S(UT)daVU2Tdτ) 0 = \left( \oint_{\mathcal{S}} (T \nabla U) \cdot d \mathbf{a} - \int_{\mathcal{V}} T \nabla^{2} U d \tau \right) - \left( \oint_{\mathcal{S}} (U \nabla T) \cdot d \mathbf{a} - \int_{\mathcal{V}} U \nabla^{2} T d \tau \right)

Which simplifies to:

V(T2UU2T)dτ=S(TUUT)da \int_{\mathcal{V}} \left( T \nabla^{2} U - U \nabla^{2} T \right) d \tau = \oint_{\mathcal{S}} \left( T \nabla U - U \nabla T \right) \cdot d \mathbf{a}

(5)

Stokes’ theorem

S(×v)da=Pvdl \int_{\mathcal{S}} (\nabla \times \mathbf{v} )\cdot d\mathbf{a} = \oint_{\mathcal{P}} \mathbf{v} \cdot d\mathbf{l}

Let’s substitute v=Tc\mathbf{v} = T \mathbf{c} into Stokes’ theorem.

S[×(Tc)]da=P(Tc)dl \int_{\mathcal{S}} \left[ \nabla \times (T \mathbf{c}) \right] \cdot d\mathbf{a} = \oint_{\mathcal{P}} (T \mathbf{c}) \cdot d\mathbf{l}

Then, by the product rule ×(fA)=f(×A)A×(f)\nabla \times (f\mathbf{A}) = f(\nabla \times \mathbf{A}) - \mathbf{A} \times (\nabla f), the LHS can be written as follows.

ST(×c)daS[c×(T)]da=P(Tc)dl \int_{\mathcal{S}} T (\nabla \times \mathbf{c}) \cdot d\mathbf{a} - \int_{\mathcal{S}} \left[ \mathbf{c} \times (\nabla T) \right] \cdot d\mathbf{a} = \oint_{\mathcal{P}} (T \mathbf{c}) \cdot d\mathbf{l}

Since c\mathbf{c} is a constant vector in the first term on the LHS, it results in ×c=0\nabla \times \mathbf{c} = \mathbf{0}. Therefore,

S[c×(T)]da=P(Tc)dl \int_{\mathcal{S}} \left[ \mathbf{c} \times (\nabla T) \right] \cdot d\mathbf{a} = - \oint_{\mathcal{P}} (T \mathbf{c}) \cdot d\mathbf{l}

Also, by the scalar triple product formula, the following holds.

(c×T)da=(T×da)c \left( \mathbf{c} \times \nabla T \right) \cdot d \mathbf{a} = \left( \nabla T \times d \mathbf{a} \right) \cdot \mathbf{c}

Therefore,

S(T×da)c=P(Tc)dl    cS(T×da)=cPTdl    S(T×da)=PTdl \begin{align*} && \int_{\mathcal{S}} \left( \nabla T \times d \mathbf{a} \right) \cdot \mathbf{c} = - \oint_{\mathcal{P}} (T \mathbf{c}) \cdot d\mathbf{l} \\ \implies && \mathbf{c} \cdot \int_{\mathcal{S}} \left( \nabla T \times d \mathbf{a} \right) = - \mathbf{c} \cdot \oint_{\mathcal{P}} T d\mathbf{l} \\ \implies && \int_{\mathcal{S}} \left( \nabla T \times d \mathbf{a} \right) = - \oint_{\mathcal{P}} T d\mathbf{l} \end{align*}


  1. David J. Griffiths, Introduction to Electrodynamics (4th Edition, 2014), p62 ↩︎