logo

Fundamental Solution of the Laplace Equation 📂Partial Differential Equations

Fundamental Solution of the Laplace Equation

Buildup1

Laplace’s equation is invariant under rotation transformations, so consider changing u(x)u(x)’s variables to radii. This allows simplifying the differential equation as follows.

Let’s assume that u=u(x)u=u(x) is a solution to Laplace’s equation.

Δu=0 \Delta u = 0

And let’s set r=x=(x12++xn2)1/2r=|x|=(x_{1}^{2} + \cdots + x_{n}^{2})^{1/2} and assume vC2v\in C^2 and u(x)=v(x)=v(r)(xRn{0})u(x) = v(|x|) = v(r) (x\in \mathbb{R}^{n} \setminus \left\{ 0 \right\}).

v(r)=u(x)Δv=0 \begin{align*} v(r) &= u(x) \\ \Delta v &= 0 \end{align*}

Now calculate the following derivatives to represent Laplace’s equation for uu.

rxi=xi(x12+xn2)1/2=12(x12+xn2)1/22xi=xi(x12+xn2)1/2=xiranduxi(x)=xiv(r)=dv(r)drrxi=v(r)xir \begin{equation*} \begin{aligned} \dfrac{\partial r}{\partial x_{i}} &= \dfrac{\partial}{\partial x_{i}} (x_{1}^{2} + \cdots x_{n}^{2} )^{1/2} \\ &= \dfrac{1}{2(x_{1}^{2} + \cdots x_{n}^{2} )^{1/2}}2x_{i} \\ &= \dfrac{x_{i}}{(x_{1}^{2} + \cdots x_{n}^{2} )^{1/2}} \\ &= \dfrac{x_{i}}{r} \end{aligned} \quad \text{and} \quad \begin{aligned} u_{x_{i}}(x) &= \dfrac{\partial }{\partial x_{i}} v(r) \\ &= \dfrac{d v(r)}{d r}\dfrac{\partial r}{\partial x_{i}} \\ &= v^{\prime}(r) \dfrac{x_{i}}{r} \end{aligned} \end{equation*}

uxixi=xi(v(r)xir)=v(r)xixir+v(r)xi(xir)=dv(r)drrxixir+v(r)(1r+xixi(xir))=v(r)xi2r2+v(r)(1r+xiddr(1r)rxi)=v(r)xi2r2+v(r)(1r+xi(1r2)xir)=v(r)xi2r2+v(r)(1rxi2r3) \begin{align*} u_{x_{i}x_{i}} &= \dfrac{\partial }{\partial x_{i} } \left( v^{\prime}(r)\dfrac{x_{i}}{r} \right) \\ &= \dfrac{\partial v^{\prime}(r)}{\partial x_{i}} \dfrac{x_{i}}{r} + v^{\prime}(r)\dfrac{\partial}{\partial x_{i}}\left(\dfrac{x_{i}}{r}\right) \\ &= \dfrac{d v^{\prime}(r)}{dr} \dfrac{\partial r}{\partial x_{i}} \dfrac{x_{i}}{r} + v^{\prime}(r) \left( \dfrac{1}{r} + x_{i}\dfrac{\partial}{ \partial x_{i}} \left(\dfrac{x_{i}}{r}\right) \right) \\ &= v^{\prime \prime}(r) \dfrac{x_{i}^{2}}{r^{2}} + v^{\prime}(r) \left( \dfrac{1}{r} + x_{i}\dfrac{d}{dr} \left( \dfrac{1}{r} \right) \dfrac{\partial r}{\partial x_{i}} \right) \\ &= v^{\prime \prime}(r) \dfrac{x_{i}^{2}}{r^{2}} + v^{\prime}(r)\left(\dfrac{1}{r} + x_{i}\left(-\dfrac{1}{r^{2}}\right) \dfrac{x_{i}}{r} \right) \\ &= v^{\prime \prime}(r) \dfrac{x_{i}^{2}}{r^{2}} + v^{\prime}(r)\left(\dfrac{1}{r}-\dfrac{x_{i}^{2}}{r^{3}} \right) \end{align*}

Then, the Laplace equation is as follows.

Δu=inuxixi=v(r)r2(x12+xn2)+v(r)(nrx12+xn2r3)=v(r)r2r2+v(r)(nrr2r3)=v(r)+n1rv(r)x0 \begin{align*} \Delta u &= \sum \limits_{i}^{n} u_{x_{i} x_{i}} \\ &= \dfrac{v^{\prime \prime}(r)}{r^{2}}\left( x_{1}^{2} + \cdots x_{n}^{2} \right) + v^{\prime}(r) \left( \dfrac{n}{r} - \dfrac{x_{1}^{2} + \cdots x_{n}^{2}}{r^{3}} \right) \\ &= \dfrac{v^{\prime \prime}(r)}{r^{2}}r^{2} + v^{\prime}(r) \left( \dfrac{n}{r} - \dfrac{r^{2}}{r^{3}} \right) \\ &= v^{\prime \prime}(r) + \dfrac{n-1}{r} v^{\prime}(r) & x\ne 0 \end{align*}

Therefore, the following two equations are identical.

Δu=0 in Rn{0}    v(r)+n1rv(r)=0(r>0) \Delta u =0 \text{ in }\mathbb{R}^n\setminus\left\{ 0\right\} \iff v^{\prime \prime}(r ) + \dfrac{n-1}{r}v^{\prime}(r)=0\quad (r>0)

Solving Laplace’s equation for u(x)u(x) has reduced to solving a second-order ordinary differential equation for v(r)v(r).

Now, assume v+n1rv=0 in (0,)v^{\prime \prime}+\dfrac{n-1}{r}v^{\prime}=0 \text{ in } (0, \infty) and v0 in (0,)v^{\prime}\ne 0 \text{ in } (0, \infty).

Then, summarizing, we obtain the following equation.

vv=1nr \dfrac{v^{\prime \prime}}{v^{\prime}} = \dfrac{1-n}{r}

Substituting w=vC1(0,)w=v^{\prime} \in C^{1}(0, \infty), we obtain the following.

ww=1nr \dfrac{w^{\prime}}{w} = \dfrac{1-n}{r}

Integrating the left side gives the following.

1swwdr=logw(s)logw(1)=logw(s)w(1) \int_{1}^{s} \dfrac{w^{\prime}}{w} dr = \log |w(s)| - \log |w(1)| = \log \left| \dfrac{w(s)}{w(1)} \right|

Integrating the right side gives the following.

1s1nrdr=(1n)[logslog1]=(1n)logs=logs1n \int_{1}^{s} \dfrac{1-n}{r} dr = (1-n) \left[ \log s - \log 1 \right] = (1-n)\log s =\log s^{1-n}

Therefore, we get the following.

w(s)w(1)=s1n    w(s)=w(1)s1n(s>0) \dfrac{|w(s)|}{|w(1)|}=s^{1-n} \implies |w(s)|=|w(1)|s^{1-n} (s>0)

Expressing it again in terms of vv gives the following.

v(s)=w(s)=w(1)s1n=v(1)s1n v^{\prime}(s)=w(s)=w(1)s^{1-n}=v^{\prime}(1)s^{1-n}

At this point, applying the Fundamental Theorem of Calculus to v(r)v(1)v(r)-v(1), and then substituting the above equation, we get the following.

v(r)v(1)=1rv(s)ds=v(1)1rs1nds={v(1)logrn=2v(1)12n(r2n1)n3 \begin{align*} v(r)-v(1) &= \int_{1}^{r} v^{\prime}(s) ds = v^{\prime}(1)\int_{1}^{r} s^{1-n} ds \\ &= \begin{cases} v^{\prime}(1)\log r & n=2 \\ v^{\prime}(1) \dfrac{1}{2-n}(r^{2-n}-1) & n \ge 3 \end{cases} \end{align*}

Rearranging for v(r)v(r) gives the following.

v(r)={v(1)logr+v(1)n=2v(1)12n1rn2+(v(1)+v(1)n2)n3 v(r) = \begin{cases} v^{\prime}(1)\log r + v^{\prime}(1) & n=2 \\ v^{\prime}(1)\dfrac{1}{2-n} \dfrac{1}{r^{n-2}} + \left(v(1)+\dfrac{v^{\prime}(1)}{n-2} \right) & n \ge 3 \end{cases}

Expressing the constant part as b,cb, c simplifies as follows.

v(r)={blogr+cn=2brn2+cn3 v(r) = \begin{cases} b\log r + c & n=2 \\ \dfrac{b}{r^{n-2}} + c & n \ge 3 \end{cases}

From these results, we define the fundamental solution to the Laplace equation.

Definition

xRnx \in \mathbb{R}^{n}, and for x0x \ne 0, the function Φ\Phi below is defined as the fundamental solution to Laplace’s equation.

Φ(x):={12πlogxn=21n(n2)α(n)1xn2n3 \Phi (x) := \begin{cases} -\dfrac{1}{2\pi}\log |x| & n=2 \\ \dfrac{1}{n(n-2)\alpha (n)} \dfrac{1}{|x|^{n-2}} & n \ge 3 \end{cases}

Here, α(n)\alpha (n) is the volume of the unit ball B(0, 1)B(0,\ 1) in Rn\mathbb{R}^{n}. nα(n)n\alpha (n) is the surface area of the unit ball in Rn\mathbb{R}^{n}.


  1. Lawrence C. Evans, Partial Differential Equations (2nd Edition, 2010), p21-22 ↩︎