Fundamental Solution of the Laplace Equation
📂Partial Differential Equations Fundamental Solution of the Laplace Equation Buildup Laplace’s equation is invariant under rotation transformations , so consider changing u ( x ) u(x) u ( x ) ’s variables to radii. This allows simplifying the differential equation as follows.
Let’s assume that u = u ( x ) u=u(x) u = u ( x ) is a solution to Laplace’s equation .
Δ u = 0
\Delta u = 0
Δ u = 0
And let’s set r = ∣ x ∣ = ( x 1 2 + ⋯ + x n 2 ) 1 / 2 r=|x|=(x_{1}^{2} + \cdots + x_{n}^{2})^{1/2} r = ∣ x ∣ = ( x 1 2 + ⋯ + x n 2 ) 1/2 and assume v ∈ C 2 v\in C^2 v ∈ C 2 and u ( x ) = v ( ∣ x ∣ ) = v ( r ) ( x ∈ R n ∖ { 0 } ) u(x) = v(|x|) = v(r) (x\in \mathbb{R}^{n} \setminus \left\{ 0 \right\}) u ( x ) = v ( ∣ x ∣ ) = v ( r ) ( x ∈ R n ∖ { 0 } ) .
v ( r ) = u ( x ) Δ v = 0
\begin{align*}
v(r) &= u(x)
\\ \Delta v &= 0
\end{align*}
v ( r ) Δ v = u ( x ) = 0
Now calculate the following derivatives to represent Laplace’s equation for u u u .
∂ r ∂ x i = ∂ ∂ x i ( x 1 2 + ⋯ x n 2 ) 1 / 2 = 1 2 ( x 1 2 + ⋯ x n 2 ) 1 / 2 2 x i = x i ( x 1 2 + ⋯ x n 2 ) 1 / 2 = x i r and u x i ( x ) = ∂ ∂ x i v ( r ) = d v ( r ) d r ∂ r ∂ x i = v ′ ( r ) x i r
\begin{equation*}
\begin{aligned}
\dfrac{\partial r}{\partial x_{i}} &= \dfrac{\partial}{\partial x_{i}} (x_{1}^{2} + \cdots x_{n}^{2} )^{1/2}
\\ &= \dfrac{1}{2(x_{1}^{2} + \cdots x_{n}^{2} )^{1/2}}2x_{i}
\\ &= \dfrac{x_{i}}{(x_{1}^{2} + \cdots x_{n}^{2} )^{1/2}}
\\ &= \dfrac{x_{i}}{r}
\end{aligned}
\quad \text{and} \quad
\begin{aligned}
u_{x_{i}}(x) &= \dfrac{\partial }{\partial x_{i}} v(r)
\\ &= \dfrac{d v(r)}{d r}\dfrac{\partial r}{\partial x_{i}}
\\ &= v^{\prime}(r) \dfrac{x_{i}}{r}
\end{aligned}
\end{equation*}
∂ x i ∂ r = ∂ x i ∂ ( x 1 2 + ⋯ x n 2 ) 1/2 = 2 ( x 1 2 + ⋯ x n 2 ) 1/2 1 2 x i = ( x 1 2 + ⋯ x n 2 ) 1/2 x i = r x i and u x i ( x ) = ∂ x i ∂ v ( r ) = d r d v ( r ) ∂ x i ∂ r = v ′ ( r ) r x i
u x i x i = ∂ ∂ x i ( v ′ ( r ) x i r ) = ∂ v ′ ( r ) ∂ x i x i r + v ′ ( r ) ∂ ∂ x i ( x i r ) = d v ′ ( r ) d r ∂ r ∂ x i x i r + v ′ ( r ) ( 1 r + x i ∂ ∂ x i ( x i r ) ) = v ′ ′ ( r ) x i 2 r 2 + v ′ ( r ) ( 1 r + x i d d r ( 1 r ) ∂ r ∂ x i ) = v ′ ′ ( r ) x i 2 r 2 + v ′ ( r ) ( 1 r + x i ( − 1 r 2 ) x i r ) = v ′ ′ ( r ) x i 2 r 2 + v ′ ( r ) ( 1 r − x i 2 r 3 )
\begin{align*}
u_{x_{i}x_{i}} &= \dfrac{\partial }{\partial x_{i} } \left( v^{\prime}(r)\dfrac{x_{i}}{r} \right)
\\ &= \dfrac{\partial v^{\prime}(r)}{\partial x_{i}} \dfrac{x_{i}}{r} + v^{\prime}(r)\dfrac{\partial}{\partial x_{i}}\left(\dfrac{x_{i}}{r}\right)
\\ &= \dfrac{d v^{\prime}(r)}{dr} \dfrac{\partial r}{\partial x_{i}} \dfrac{x_{i}}{r} + v^{\prime}(r) \left( \dfrac{1}{r} + x_{i}\dfrac{\partial}{ \partial x_{i}} \left(\dfrac{x_{i}}{r}\right) \right)
\\ &= v^{\prime \prime}(r) \dfrac{x_{i}^{2}}{r^{2}} + v^{\prime}(r) \left( \dfrac{1}{r} + x_{i}\dfrac{d}{dr} \left( \dfrac{1}{r} \right) \dfrac{\partial r}{\partial x_{i}} \right)
\\ &= v^{\prime \prime}(r) \dfrac{x_{i}^{2}}{r^{2}} + v^{\prime}(r)\left(\dfrac{1}{r} + x_{i}\left(-\dfrac{1}{r^{2}}\right) \dfrac{x_{i}}{r} \right)
\\ &= v^{\prime \prime}(r) \dfrac{x_{i}^{2}}{r^{2}} + v^{\prime}(r)\left(\dfrac{1}{r}-\dfrac{x_{i}^{2}}{r^{3}} \right)
\end{align*}
u x i x i = ∂ x i ∂ ( v ′ ( r ) r x i ) = ∂ x i ∂ v ′ ( r ) r x i + v ′ ( r ) ∂ x i ∂ ( r x i ) = d r d v ′ ( r ) ∂ x i ∂ r r x i + v ′ ( r ) ( r 1 + x i ∂ x i ∂ ( r x i ) ) = v ′′ ( r ) r 2 x i 2 + v ′ ( r ) ( r 1 + x i d r d ( r 1 ) ∂ x i ∂ r ) = v ′′ ( r ) r 2 x i 2 + v ′ ( r ) ( r 1 + x i ( − r 2 1 ) r x i ) = v ′′ ( r ) r 2 x i 2 + v ′ ( r ) ( r 1 − r 3 x i 2 )
Then, the Laplace equation is as follows.
Δ u = ∑ i n u x i x i = v ′ ′ ( r ) r 2 ( x 1 2 + ⋯ x n 2 ) + v ′ ( r ) ( n r − x 1 2 + ⋯ x n 2 r 3 ) = v ′ ′ ( r ) r 2 r 2 + v ′ ( r ) ( n r − r 2 r 3 ) = v ′ ′ ( r ) + n − 1 r v ′ ( r ) x ≠ 0
\begin{align*}
\Delta u &= \sum \limits_{i}^{n} u_{x_{i} x_{i}}
\\ &= \dfrac{v^{\prime \prime}(r)}{r^{2}}\left( x_{1}^{2} + \cdots x_{n}^{2} \right) + v^{\prime}(r) \left( \dfrac{n}{r} - \dfrac{x_{1}^{2} + \cdots x_{n}^{2}}{r^{3}} \right)
\\ &= \dfrac{v^{\prime \prime}(r)}{r^{2}}r^{2} + v^{\prime}(r) \left( \dfrac{n}{r} - \dfrac{r^{2}}{r^{3}} \right)
\\ &= v^{\prime \prime}(r) + \dfrac{n-1}{r} v^{\prime}(r) & x\ne 0
\end{align*}
Δ u = i ∑ n u x i x i = r 2 v ′′ ( r ) ( x 1 2 + ⋯ x n 2 ) + v ′ ( r ) ( r n − r 3 x 1 2 + ⋯ x n 2 ) = r 2 v ′′ ( r ) r 2 + v ′ ( r ) ( r n − r 3 r 2 ) = v ′′ ( r ) + r n − 1 v ′ ( r ) x = 0
Therefore, the following two equations are identical.
Δ u = 0 in R n ∖ { 0 } ⟺ v ′ ′ ( r ) + n − 1 r v ′ ( r ) = 0 ( r > 0 )
\Delta u =0 \text{ in }\mathbb{R}^n\setminus\left\{ 0\right\} \iff v^{\prime \prime}(r ) + \dfrac{n-1}{r}v^{\prime}(r)=0\quad (r>0)
Δ u = 0 in R n ∖ { 0 } ⟺ v ′′ ( r ) + r n − 1 v ′ ( r ) = 0 ( r > 0 )
Solving Laplace’s equation for u ( x ) u(x) u ( x ) has reduced to solving a second-order ordinary differential equation for v ( r ) v(r) v ( r ) .
Now, assume v ′ ′ + n − 1 r v ′ = 0 in ( 0 , ∞ ) v^{\prime \prime}+\dfrac{n-1}{r}v^{\prime}=0 \text{ in } (0, \infty) v ′′ + r n − 1 v ′ = 0 in ( 0 , ∞ ) and v ′ ≠ 0 in ( 0 , ∞ ) v^{\prime}\ne 0 \text{ in } (0, \infty) v ′ = 0 in ( 0 , ∞ ) .
Then, summarizing, we obtain the following equation.
v ′ ′ v ′ = 1 − n r
\dfrac{v^{\prime \prime}}{v^{\prime}} = \dfrac{1-n}{r}
v ′ v ′′ = r 1 − n
Substituting w = v ′ ∈ C 1 ( 0 , ∞ ) w=v^{\prime} \in C^{1}(0, \infty) w = v ′ ∈ C 1 ( 0 , ∞ ) , we obtain the following.
w ′ w = 1 − n r
\dfrac{w^{\prime}}{w} = \dfrac{1-n}{r}
w w ′ = r 1 − n
Integrating the left side gives the following.
∫ 1 s w ′ w d r = log ∣ w ( s ) ∣ − log ∣ w ( 1 ) ∣ = log ∣ w ( s ) w ( 1 ) ∣
\int_{1}^{s} \dfrac{w^{\prime}}{w} dr = \log |w(s)| - \log |w(1)| = \log \left| \dfrac{w(s)}{w(1)} \right|
∫ 1 s w w ′ d r = log ∣ w ( s ) ∣ − log ∣ w ( 1 ) ∣ = log w ( 1 ) w ( s )
Integrating the right side gives the following.
∫ 1 s 1 − n r d r = ( 1 − n ) [ log s − log 1 ] = ( 1 − n ) log s = log s 1 − n
\int_{1}^{s} \dfrac{1-n}{r} dr = (1-n) \left[ \log s - \log 1 \right] = (1-n)\log s =\log s^{1-n}
∫ 1 s r 1 − n d r = ( 1 − n ) [ log s − log 1 ] = ( 1 − n ) log s = log s 1 − n
Therefore, we get the following.
∣ w ( s ) ∣ ∣ w ( 1 ) ∣ = s 1 − n ⟹ ∣ w ( s ) ∣ = ∣ w ( 1 ) ∣ s 1 − n ( s > 0 )
\dfrac{|w(s)|}{|w(1)|}=s^{1-n} \implies |w(s)|=|w(1)|s^{1-n} (s>0)
∣ w ( 1 ) ∣ ∣ w ( s ) ∣ = s 1 − n ⟹ ∣ w ( s ) ∣ = ∣ w ( 1 ) ∣ s 1 − n ( s > 0 )
Expressing it again in terms of v v v gives the following.
v ′ ( s ) = w ( s ) = w ( 1 ) s 1 − n = v ′ ( 1 ) s 1 − n
v^{\prime}(s)=w(s)=w(1)s^{1-n}=v^{\prime}(1)s^{1-n}
v ′ ( s ) = w ( s ) = w ( 1 ) s 1 − n = v ′ ( 1 ) s 1 − n
At this point, applying the Fundamental Theorem of Calculus to v ( r ) − v ( 1 ) v(r)-v(1) v ( r ) − v ( 1 ) , and then substituting the above equation, we get the following.
v ( r ) − v ( 1 ) = ∫ 1 r v ′ ( s ) d s = v ′ ( 1 ) ∫ 1 r s 1 − n d s = { v ′ ( 1 ) log r n = 2 v ′ ( 1 ) 1 2 − n ( r 2 − n − 1 ) n ≥ 3
\begin{align*}
v(r)-v(1) &= \int_{1}^{r} v^{\prime}(s) ds = v^{\prime}(1)\int_{1}^{r} s^{1-n} ds
\\ &= \begin{cases} v^{\prime}(1)\log r & n=2 \\ v^{\prime}(1) \dfrac{1}{2-n}(r^{2-n}-1) & n \ge 3 \end{cases}
\end{align*}
v ( r ) − v ( 1 ) = ∫ 1 r v ′ ( s ) d s = v ′ ( 1 ) ∫ 1 r s 1 − n d s = ⎩ ⎨ ⎧ v ′ ( 1 ) log r v ′ ( 1 ) 2 − n 1 ( r 2 − n − 1 ) n = 2 n ≥ 3
Rearranging for v ( r ) v(r) v ( r ) gives the following.
v ( r ) = { v ′ ( 1 ) log r + v ′ ( 1 ) n = 2 v ′ ( 1 ) 1 2 − n 1 r n − 2 + ( v ( 1 ) + v ′ ( 1 ) n − 2 ) n ≥ 3
v(r) =
\begin{cases}
v^{\prime}(1)\log r + v^{\prime}(1) & n=2
\\ v^{\prime}(1)\dfrac{1}{2-n} \dfrac{1}{r^{n-2}} + \left(v(1)+\dfrac{v^{\prime}(1)}{n-2} \right) & n \ge 3
\end{cases}
v ( r ) = ⎩ ⎨ ⎧ v ′ ( 1 ) log r + v ′ ( 1 ) v ′ ( 1 ) 2 − n 1 r n − 2 1 + ( v ( 1 ) + n − 2 v ′ ( 1 ) ) n = 2 n ≥ 3
Expressing the constant part as b , c b, c b , c simplifies as follows.
v ( r ) = { b log r + c n = 2 b r n − 2 + c n ≥ 3
v(r) =
\begin{cases} b\log r + c & n=2
\\ \dfrac{b}{r^{n-2}} + c & n \ge 3
\end{cases}
v ( r ) = ⎩ ⎨ ⎧ b log r + c r n − 2 b + c n = 2 n ≥ 3
From these results, we define the fundamental solution to the Laplace equation.
Definition x ∈ R n x \in \mathbb{R}^{n} x ∈ R n , and for x ≠ 0 x \ne 0 x = 0 , the function Φ \Phi Φ below is defined as the fundamental solution to Laplace’s equation.
Φ ( x ) : = { − 1 2 π log ∣ x ∣ n = 2 1 n ( n − 2 ) α ( n ) 1 ∣ x ∣ n − 2 n ≥ 3
\Phi (x) :=
\begin{cases}
-\dfrac{1}{2\pi}\log |x| & n=2
\\ \dfrac{1}{n(n-2)\alpha (n)} \dfrac{1}{|x|^{n-2}} & n \ge 3
\end{cases}
Φ ( x ) := ⎩ ⎨ ⎧ − 2 π 1 log ∣ x ∣ n ( n − 2 ) α ( n ) 1 ∣ x ∣ n − 2 1 n = 2 n ≥ 3
Here, α ( n ) \alpha (n) α ( n ) is the volume of the unit ball B ( 0 , 1 ) B(0,\ 1) B ( 0 , 1 ) in R n \mathbb{R}^{n} R n . n α ( n ) n\alpha (n) n α ( n ) is the surface area of the unit ball in R n \mathbb{R}^{n} R n .