logo

Transport Equation 📂Partial Differential Equations

Transport Equation

Definition1

Below is referred to as a transport equation.

ut+bDu=0in Rn×(0, ) \begin{equation} u_{t} + b \cdot Du=0\quad \text{in }\mathbb{R}^n \times (0,\ \infty) \end{equation}

  • b=(b1,b2,,bn)Rnb=(b_{1}, b_2, \cdot, b_{n}) \in \mathbb{R}^n is a fixed vector
  • u=u(x,t)u=u(x,t) is u:Rn×[0,)Ru:\mathbb{R}^n \times [0,\infty) \rightarrow \mathbb{R}
  • x=(x1,,xn)Rnx=(x_{1}, \cdots , x_{n})\in \mathbb{R}^n
  • t0t \ge 0 is time
  • Du=Dxu=(ux1,,uxn)Du=D_{x}u=(u_{x_{1}}, \cdots ,u_{x_{n}}) is the gradient of uu with respect to the spatial variable xx

Explanation

Assume uC1u \in C^1 is a solution to (1)(1). Then, along the line in direction (b,1)(b,1) passing through a fixed point (x,t)(x,t), on (x+sb, t+s)=(x, t)+s(b, 1)(x+sb,\ t+s)=(x,\ t)+s(b,\ 1), uu is constant. That is, u(x+sb, t+s)u(x+sb,\ t+s) is independent of ss. This can be verified as follows. Let’s define zz as follows.

z(s):=u(x+sb, t+s)(sR) z(s):=u(x+sb,\ t+s)\quad (s \in \mathbb{R})

It is sufficient to show dz(s)ds=0\dfrac{dz(s)}{ds}=0.

z˙(s)=dzds=uxdxds+utdtds=u(x+sb, t+s)xd(x+sb)ds+ut(x+sb, t+s)=Du(x+sb, t+s)b+ut(x+sb, t+s)=0 \begin{align*} \dot{z}(s) &= \dfrac{dz}{ds} \\ &= \dfrac{\partial u}{\partial x}\dfrac{d x}{d s} + \dfrac{\partial u}{\partial t}\dfrac{d t}{d s} \\ &= \dfrac{\partial u(x+sb,\ t+s)}{\partial x}\cdot\dfrac{d(x+sb)}{ds}+u_{t}(x+sb,\ t+s) \\ &= Du(x+sb,\ t+s) \cdot b +u_{t}(x+sb,\ t+s) \\ &= 0 \end{align*}

Since uu satisfies (1)(1), the last equality holds.

See Also


  1. Lawrence C. Evans, Partial Differential Equations (2nd Edition, 2010), p18 ↩︎