logo

Properties of the Space of Invertible Linear Transformations 📂Linear Algebra

Properties of the Space of Invertible Linear Transformations

Theorem1

Let’s call the set of all invertible linear transformations on Ω\Omega.

Ω={all invertible linear operator on Rn} \Omega = \left\{ \text{all invertible linear operator on } \mathbb{R}^{n} \right\}

  • (a) If the following holds for T1ΩT_{1} \in \Omega and T2L(Rn)T_{2} \in L(\mathbb{R}^{n}), then T2ΩT_{2} \in \Omega is true.

    T2T1T11<1 \| T_{2} - T_{1} \| \| T_{1}^{-1} \| < 1

    Here, T\| T \| is the norm of the linear transformation.

  • (b) The following holds for h>0h \gt 0: T11h    Txhxx \| T^{-1} \| \le \dfrac{1}{h} \iff \| T \mathbf{x} \| \ge h | \mathbf{x} |\quad \forall \mathbf{x}

  • (c) Ω\Omega is an open set.

  • (d) The given f:ΩΩf : \Omega \to \Omega is continuous as follows:

    f(T)=T1 f( T ) = T^{-1}

Proof

(a)

Suppose the following holds for T1ΩT_{1} \in \Omega and T2L(Rn)T_{2} \in L(\mathbb{R}^{n}).

T2T1T11<1 \| T_{2} - T_{1} \| \| T_{1}^{-1} \| < 1

Let’s denote T11=1α,T2T1=β\| T_{1}^{-1} \| = \dfrac{1}{\alpha}, \| T_{2} - T_{1} \| = \beta. Then, by the assumption, β<α\beta < \alpha is true. By the property of the norm of a linear transformation, the following holds for all xRn\mathbf{x} \in \mathbb{R}^{n}.

αx=αT11(T1(x))αT11T1(x)=α1αT1(x)=T1(x)=T1(x)T2(x)+T2(x)T1(x)T2(x)+T2(x)T1T2x+T2(x)=βx+T2(x) \begin{align*} \alpha | \mathbf{x} | &= \alpha | T_{1}^{-1}( T_{1} ( \mathbf{x})) | \\ &\le \alpha \| T_{1}^{-1} \| | T_{1} (\mathbf{x}) | \\ &= \alpha \dfrac{1}{\alpha} | T_{1} (\mathbf{x}) | = | T_{1} (\mathbf{x}) | \\ &= | T_{1} (\mathbf{x}) - T_{2}(\mathbf{x}) + T_{2}(\mathbf{x}) | \\ &\le | T_{1} (\mathbf{x}) - T_{2}(\mathbf{x}) | + | T_{2}(\mathbf{x}) | \\ &\le \| T_{1} - T_{2} \| |\mathbf{x}| + | T_{2}(\mathbf{x}) | \\ &= \beta |\mathbf{x}| + | T_{2}(\mathbf{x}) | \end{align*}

Therefore, we obtain the following:

(αβ)xT2(x),xRn \begin{equation} (\alpha - \beta) | \mathbf{x} | \le | T_{2} ( \mathbf{x} ) |,\quad \forall \mathbf{x}\in \mathbb{R}^{n} \end{equation}

At this time, because αβ>0\alpha - \beta > 0, the following is true.

x0    T2(x)0 \mathbf{x} \ne \mathbf{0} \implies T_{2}(\mathbf{x}) \ne \mathbf{0}

Since this is an equivalence condition for a linear transformation to be injective, T2T_{2} is injective, thus it is an invertible transformation.

T11h    Txhxx \| T^{-1} \| \le \dfrac{1}{h} \iff \| T \mathbf{x} \| \ge h | \mathbf{x} |\quad \forall \mathbf{x}

(b)

  • ()(\Longrightarrow)

    Let’s denote T11h\| T^{-1} \| \le \dfrac{1}{h}. Then,

    T11h    hT11    hT1TxTx    hT1TxhT1TxTx    hxTx \begin{align*} && \| T^{-1} \| &\le \dfrac{1}{h} \\ \implies && h \| T^{-1} \| &\le 1 \\ \implies && h \| T^{-1} \| | T \mathbf{x} | &\le | T \mathbf{x} | \\ \implies && h |T^{-1} T \mathbf{x} | \le h \| T^{-1} \| | T \mathbf{x} | &\le | T \mathbf{x} | \\ \implies && h | \mathbf{x} | &\le | T \mathbf{x} | \\ \end{align*}

  • ()(\Longleftarrow)

    TxhxTTxhx    T1TxhT1x    T1TxhT1x \begin{align*} && | T \mathbf{x} | &\ge h | \mathbf{x} | \\ && \| T \| | T \mathbf{x} | &\ge h | \mathbf{x} | \\ \implies && \| T^{-1} \| | T \mathbf{x} | &\ge h \| T^{-1} \| | \mathbf{x} | \\ \implies && \| T^{-1} \| | T \mathbf{x} | &\ge h \| T^{-1} \| | \mathbf{x} | \\ \end{align*}

(c)

According to (a), all T2L(Rn)T_{2} \in L(\mathbb{R}^{n}) that satisfy the following are T2ΩT_{2} \in \Omega.

d(T1,T2)=T1T2<α d(T_{1}, T_{2}) = \| T_{1} - T_{2} \| < \alpha

Then, all T1ΩT_{1} \in \Omega have a neighborhood that is a subset of Ω\Omega, thus they are interior points. Since all elements of Ω\Omega are interior points, Ω\Omega is an open set.

(d)

Let’s denote composition simply as follows.

T2T1=T2T1 T_{2} \circ T_{1} = T_{2}T_{1}

Substitute (1)(1) for x=T21(y)\mathbf{x} = T_{2}^{-1}(\mathbf{y}).

(αβ)T21(y)T2(T21(y))=y,yRn    T21(y)1αβy \begin{align*} && (\alpha - \beta) | T_{2}^{-1}(\mathbf{y})| &\le | T_{2} ( T_{2}^{-1}(\mathbf{y}) ) | = | \mathbf{y} |,\quad \forall \mathbf{y}\in \mathbb{R}^{n} \\ \implies && | T_{2}^{-1}(\mathbf{y})| &\le \dfrac{1}{\alpha - \beta}|\mathbf{y}| \end{align*}

Then, by the property of the norm of a linear transformation, the following holds.

T211αβ \| T_{2} ^{-1} \| \le \dfrac{1}{\alpha - \beta}

Moreover, the following is true.

T21T11=T21(T1T2)T11 T_{2}^{-1} - T_{1}^{-1} = T_{2}^{-1}( T_{1} - T_{2} ) T_{1}^{-1}

Then, since the norm of a product is greater than the product of norms, the following holds.

T21T11T21T1T2T11βα(αβ) \| T_{2}^{-1} - T_{1}^{-1} \| \le \| T_{2}^{-1} \| \| T_{1} - T_{2} \| \| T_{1}^{-1}\| \le \dfrac{\beta }{\alpha (\alpha-\beta)}

Therefore, when d(T1,T2)=T2T1=β0d(T_{1}, T_{2}) = \|T_{2} - T_{1} \| =\beta \to 0, since d(T11,T21)=T21T110d(T_{1}^{-1}, T_{2}^{-1})=\|T_{2}^{-1} - T_{1}^{-1}\| \to 0, the mapping of TT1T \mapsto T^{-1} is continuous.


  1. Walter Rudin, Principles of Mathmatical Analysis (3rd Edition, 1976), p209 ↩︎