Norm of Linear Transformations
📂Linear Algebra Norm of Linear Transformations Definition A linear transformation T ∈ L ( R n , R m ) T \in L(\mathbb{R}^{n}, \mathbb{R}^{m}) T ∈ L ( R n , R m ) ’s norm is defined as follows.
∥ T ∥ : = sup ∣ x ∣ = 1 ∣ T ( x ) ∣
\begin{equation}
\| T \| := \sup \limits_{| \mathbf{x} | = 1} | T ( \mathbf{x} ) |
\end{equation}
∥ T ∥ := ∣ x ∣ = 1 sup ∣ T ( x ) ∣
Explanation If we look at (a) , the following equation holds, so ∥ T ∥ \| T \| ∥ T ∥ is the rate of change in size when T T T maps the elements of R n \mathbb{R}^{n} R n to R m \mathbb{R}^{m} R m . In other words, no matter how much the size changes, it means to the extent of ∥ T ∥ \| T \| ∥ T ∥ .
∣ T ( x ) ∣ ∣ x ∣ ≤ ∥ T ∥
\dfrac{|T(\mathbf{x})|}{|\mathbf{x}|} \le \| T \|
∣ x ∣ ∣ T ( x ) ∣ ≤ ∥ T ∥
Also, by definition, ∥ T ∥ \| T \| ∥ T ∥ is known to be the smallest value among λ \lambda λ that satisfies the following.
∣ T ( x ) ∣ ≤ λ ∣ x ∣ , ∀ x ∈ R n
| T (\mathbf{x}) | \le \lambda | \mathbf{x} | , \quad \forall \mathbf{x} \in \mathbb{R}^{n}
∣ T ( x ) ∣ ≤ λ ∣ x ∣ , ∀ x ∈ R n
It can be easily verified that ∥ T ∥ \| T \| ∥ T ∥ satisfies the definition of a norm.
∥ T ∥ ≥ 0 \| T \| \ge 0 ∥ T ∥ ≥ 0 ∥ T ∥ = 0 ⟺ T = 0 \| T \| = 0 \iff T = 0 ∥ T ∥ = 0 ⟺ T = 0 ∥ c T ∥ = ∣ c ∣ ∥ T ∥ \| c T \| = | c | \| T \| ∥ c T ∥ = ∣ c ∣∥ T ∥ ∥ T 1 + T 2 ∥ ≤ ∥ T 1 ∥ + ∥ T 2 ∥ \| T_{1} + T_{2} \| \le \| T_{1} \| + \| T_{2} \| ∥ T 1 + T 2 ∥ ≤ ∥ T 1 ∥ + ∥ T 2 ∥ Then, since the distance of L ( R n , R m ) L(\mathbb{R}^{n}, \mathbb{R}^{m}) L ( R n , R m ) can be given as follows, L ( R n , R m ) L(\mathbb{R}^{n}, \mathbb{R}^{m}) L ( R n , R m ) becomes a metric space .
d ( T 1 , T 2 ) = ∥ T 1 − T 2 ∥ , T 1 , T 2 ∈ L ( R n , R m )
d(T_{1}, T_{2}) = \| T_{1} - T_{2} \|,\quad T_{1},T_{2} \in L(\mathbb{R}^{n}, \mathbb{R}^{m})
d ( T 1 , T 2 ) = ∥ T 1 − T 2 ∥ , T 1 , T 2 ∈ L ( R n , R m )
Definition ( 1 ) (1) ( 1 ) and theorem (a) are necessary and sufficient conditions.
∥ T ∥ : = sup ∣ x ∣ = 1 ∣ T ( x ) ∣ ⟹ ∣ T ( x ) ∣ ≤ ∥ T ∥ ∣ x ∣ , ∀ x ∈ R n
\| T \| := \sup \limits_{| \mathbf{x} | = 1} | T ( \mathbf{x} ) | \implies | T(\mathbf{x}) | \le \| T \| | \mathbf{x} |,\quad \forall \mathbf{x} \in \mathbb{R}^{n}
∥ T ∥ := ∣ x ∣ = 1 sup ∣ T ( x ) ∣ ⟹ ∣ T ( x ) ∣ ≤ ∥ T ∥∣ x ∣ , ∀ x ∈ R n
∥ T ∥ : = min { K : ∣ T ( x ) ∣ ≤ K ∣ x ∣ , ∀ x ∈ R n } ⟹ ∥ T ∥ = sup ∣ x ∣ = 1 ∣ T ( x ) ∣
\| T \| := \min \left\{ K : | T(\mathbf{x}) | \le K | \mathbf{x} |,\quad \forall \mathbf{x} \in \mathbb{R}^{n} \right\} \implies \| T \| = \sup \limits_{| \mathbf{x} | = 1} | T ( \mathbf{x} ) |
∥ T ∥ := min { K : ∣ T ( x ) ∣ ≤ K ∣ x ∣ , ∀ x ∈ R n } ⟹ ∥ T ∥ = ∣ x ∣ = 1 sup ∣ T ( x ) ∣
Theorem (a) If T ∈ L ( R n , R m ) T \in L(\mathbb{R}^{n}, \mathbb{R}^{m}) T ∈ L ( R n , R m ) , the following holds.
∣ T ( x ) ∣ ≤ ∥ T ∥ ∣ x ∣ , ∀ x ∈ R n
| T(\mathbf{x}) | \le \| T \| | \mathbf{x} |,\quad \forall \mathbf{x} \in \mathbb{R}^{n}
∣ T ( x ) ∣ ≤ ∥ T ∥∣ x ∣ , ∀ x ∈ R n
(b) If T ∈ L ( R n , R m ) T \in L(\mathbb{R}^{n}, \mathbb{R}^{m}) T ∈ L ( R n , R m ) , ∥ T ∥ < ∞ \| T \| < \infty ∥ T ∥ < ∞ and T T T are uniformly continuous .
(c) If T 1 ∈ L ( R n , R m ) T_{1} \in L(\mathbb{R}^{n}, \mathbb{R}^{m}) T 1 ∈ L ( R n , R m ) and T 2 ∈ L ( R m , R k ) T_{2} \in L(\mathbb{R}^{m}, \mathbb{R}^{k}) T 2 ∈ L ( R m , R k ) , the following holds.
∥ T 2 ∘ T 1 ∥ ≤ ∥ T 2 ∥ ∥ T 1 ∥
\|T_{2}\circ T_{1} \| \le \| T_{2} \| \| T_{1} \|
∥ T 2 ∘ T 1 ∥ ≤ ∥ T 2 ∥∥ T 1 ∥
Proof (a) Let’s say x ≠ 0 \mathbf{x} \ne \mathbf{0} x = 0 . Then, since T T T is a linear transformation, the following holds.
∣ T ( x ) ∣ ∣ x ∣ = 1 ∣ x ∣ ∣ T ( x ) ∣ = ∣ 1 ∣ x ∣ T ( x ) ∣ = ∣ T ( x ∣ x ∣ ) ∣
\begin{align*}
\dfrac{ | T(\mathbf{x}) |}{|\mathbf{x}|} &= \dfrac{1}{|\mathbf{x}|}|T(\mathbf{x})|
\\ &= \left| \dfrac{1}{|\mathbf{x}|} T(\mathbf{x}) \right|
\\ &= \left| T\left( \dfrac{\mathbf{x}}{|\mathbf{x}|} \right) \right|
\end{align*}
∣ x ∣ ∣ T ( x ) ∣ = ∣ x ∣ 1 ∣ T ( x ) ∣ = ∣ x ∣ 1 T ( x ) = T ( ∣ x ∣ x )
Then, since ∣ x ∣ x ∣ ∣ = 1 \left| \dfrac{\mathbf{x}}{|\mathbf{x}|} \right| = 1 ∣ x ∣ x = 1 , by the definition of ∥ T ∥ \| T \| ∥ T ∥ , the following holds.
∣ T ( x ) ∣ ∣ x ∣ ≤ ∥ T ∥ ⟹ ∣ T ( x ) ∣ ≤ ∥ T ∥ ∣ x ∣ , ∀ x ∈ R n
\begin{align*}
&& \dfrac{ | T(\mathbf{x}) |}{|\mathbf{x}|} &\le \| T \|
\\ \implies && | T(\mathbf{x}) | &\le \| T \| |\mathbf{x}|,\quad \forall \mathbf{x} \in \mathbb{R}^{n}
\end{align*}
⟹ ∣ x ∣ ∣ T ( x ) ∣ ∣ T ( x ) ∣ ≤ ∥ T ∥ ≤ ∥ T ∥∣ x ∣ , ∀ x ∈ R n
■
(b) Let’s consider { e 1 , … , e n } \left\{ \mathbf{e}_{1}, \dots, \mathbf{e}_{n} \right\} { e 1 , … , e n } as the standard basis of R n \mathbb{R}^{n} R n . Then, for x ∈ R n \mathbf{x} \in \mathbb{R}^{n} x ∈ R n which is ∣ x ∣ ≤ 1 | \mathbf{x} | \le 1 ∣ x ∣ ≤ 1 , the following holds.
x = ∑ c i e i and ∣ c i ∣ ≤ 1
\mathbf{x} = \sum c_{i}\mathbf{e}_{i} \quad \text{and} \quad |c_{i}| \le 1
x = ∑ c i e i and ∣ c i ∣ ≤ 1
Then, since T T T is a linear transformation, the following holds.
∣ T ( x ) ∣ = ∣ T ( ∑ i = 1 n c i e i ) ∣ = ∣ ∑ i = 1 n c i T ( e i ) ∣ ≤ ∑ i = 1 n ∣ c i ∣ ∣ T ( e i ) ∣ ≤ ∑ i = 1 n ∣ T ( e i ) ∣
| T (\mathbf{x}) | = \left| T \left( \sum _{i=1}^{n} c_{i} \mathbf{e}_{i} \right) \right| = \left| \sum _{i=1}^{n} c_{i} T \left(\mathbf{e}_{i} \right) \right| \le \sum _{i=1}^{n} | c_{i} | | T (\mathbf{e}_{i}) | \le \sum _{i=1}^{n} | T (\mathbf{e}_{i}) |
∣ T ( x ) ∣ = T ( i = 1 ∑ n c i e i ) = i = 1 ∑ n c i T ( e i ) ≤ i = 1 ∑ n ∣ c i ∣∣ T ( e i ) ∣ ≤ i = 1 ∑ n ∣ T ( e i ) ∣
Therefore, we obtain the following.
∥ T ∥ ≤ ∑ i = 1 n ∣ T ( e i ) ∣ < ∞
\| T \| \le \sum _{i=1}^{n} | T (\mathbf{e}_{i}) | < \infty
∥ T ∥ ≤ i = 1 ∑ n ∣ T ( e i ) ∣ < ∞
By (a) , for x , y ∈ R n \mathbf{x}, \mathbf{y} \in \mathbb{R}^{n} x , y ∈ R n , the following holds.
∣ T ( x ) − T ( y ) ∣ ≤ ∥ T ∥ ∣ x − y ∣
|T(\mathbf{x}) - T(\mathbf{y})| \le \| T \| | \mathbf{x} - \mathbf{y} |
∣ T ( x ) − T ( y ) ∣ ≤ ∥ T ∥∣ x − y ∣
Let’s assume ε > 0 \varepsilon > 0 ε > 0 . Let’s say δ = ε ∥ T ∥ \delta = \dfrac{\varepsilon}{\| T \|} δ = ∥ T ∥ ε . Then, since the following holds, T T T is uniformly continuous.
∣ x − y ∣ < δ ⟹ ∣ T ( x ) − T ( y ) ∣ ≤ ∥ T ∥ ∣ x − y ∣ = ∥ T ∥ ε ∥ T ∥ = ε
| \mathbf{x} - \mathbf{y} | < \delta \implies |T(\mathbf{x}) - T(\mathbf{y})| \le \| T \| | \mathbf{x} - \mathbf{y} | = \| T \| \dfrac{\varepsilon}{\| T \|} = \varepsilon
∣ x − y ∣ < δ ⟹ ∣ T ( x ) − T ( y ) ∣ ≤ ∥ T ∥∣ x − y ∣ = ∥ T ∥ ∥ T ∥ ε = ε
(c) By (a) , the following holds.
∣ ( T 2 ∘ T 1 ) ( x ) ∣ = ∣ T 2 ( T 1 ( x ) ) ∣ ≤ ∥ T 2 ∥ ∣ T 1 ( x ) ∣ ≤ ∥ T 2 ∥ ∥ T 1 ∥ ∣ x ∣
| (T_{2}\circ T_{1}) (\mathbf{x}) | = | T_{2} (T_{1} (\mathbf{x})) | \le \| T_{2} \| |T_{1} (\mathbf{x}) | \le \| T_{2} \| \|T_{1}\| | \mathbf{x} |
∣ ( T 2 ∘ T 1 ) ( x ) ∣ = ∣ T 2 ( T 1 ( x )) ∣ ≤ ∥ T 2 ∥∣ T 1 ( x ) ∣ ≤ ∥ T 2 ∥∥ T 1 ∥∣ x ∣
Therefore, we obtain the following.
∥ T 2 ∘ T 1 ∥ ≤ ∥ T 2 ∥ ∥ T 1 ∥
\| T_{2} \circ T_{1} \| \le \| T_{2} \| \|T_{1}\|
∥ T 2 ∘ T 1 ∥ ≤ ∥ T 2 ∥∥ T 1 ∥