logo

Norm of Linear Transformations 📂Linear Algebra

Norm of Linear Transformations

Definition1

A linear transformation TL(Rn,Rm)T \in L(\mathbb{R}^{n}, \mathbb{R}^{m})’s norm is defined as follows.

T:=supx=1T(x) \begin{equation} \| T \| := \sup \limits_{| \mathbf{x} | = 1} | T ( \mathbf{x} ) | \end{equation}

Explanation

If we look at (a), the following equation holds, so T\| T \| is the rate of change in size when TT maps the elements of Rn\mathbb{R}^{n} to Rm\mathbb{R}^{m}. In other words, no matter how much the size changes, it means to the extent of T\| T \|.

T(x)xT \dfrac{|T(\mathbf{x})|}{|\mathbf{x}|} \le \| T \|

Also, by definition, T\| T \| is known to be the smallest value among λ\lambda that satisfies the following.

T(x)λx,xRn | T (\mathbf{x}) | \le \lambda | \mathbf{x} | , \quad \forall \mathbf{x} \in \mathbb{R}^{n}

It can be easily verified that T\| T \| satisfies the definition of a norm.

  • T0\| T \| \ge 0
  • T=0    T=0\| T \| = 0 \iff T = 0
  • cT=cT\| c T \| = | c | \| T \|
  • T1+T2T1+T2\| T_{1} + T_{2} \| \le \| T_{1} \| + \| T_{2} \|

Then, since the distance of L(Rn,Rm)L(\mathbb{R}^{n}, \mathbb{R}^{m}) can be given as follows, L(Rn,Rm)L(\mathbb{R}^{n}, \mathbb{R}^{m}) becomes a metric space.

d(T1,T2)=T1T2,T1,T2L(Rn,Rm) d(T_{1}, T_{2}) = \| T_{1} - T_{2} \|,\quad T_{1},T_{2} \in L(\mathbb{R}^{n}, \mathbb{R}^{m})

Definition (1)(1) and theorem (a) are necessary and sufficient conditions.

T:=supx=1T(x)    T(x)Tx,xRn \| T \| := \sup \limits_{| \mathbf{x} | = 1} | T ( \mathbf{x} ) | \implies | T(\mathbf{x}) | \le \| T \| | \mathbf{x} |,\quad \forall \mathbf{x} \in \mathbb{R}^{n}

T:=min{K:T(x)Kx,xRn}    T=supx=1T(x) \| T \| := \min \left\{ K : | T(\mathbf{x}) | \le K | \mathbf{x} |,\quad \forall \mathbf{x} \in \mathbb{R}^{n} \right\} \implies \| T \| = \sup \limits_{| \mathbf{x} | = 1} | T ( \mathbf{x} ) |

Theorem

  • (a) If TL(Rn,Rm)T \in L(\mathbb{R}^{n}, \mathbb{R}^{m}), the following holds. T(x)Tx,xRn | T(\mathbf{x}) | \le \| T \| | \mathbf{x} |,\quad \forall \mathbf{x} \in \mathbb{R}^{n}

  • (b) If TL(Rn,Rm)T \in L(\mathbb{R}^{n}, \mathbb{R}^{m}), T<\| T \| < \infty and TT are uniformly continuous.

  • (c) If T1L(Rn,Rm)T_{1} \in L(\mathbb{R}^{n}, \mathbb{R}^{m}) and T2L(Rm,Rk)T_{2} \in L(\mathbb{R}^{m}, \mathbb{R}^{k}), the following holds. T2T1T2T1 \|T_{2}\circ T_{1} \| \le \| T_{2} \| \| T_{1} \|

Proof

(a)

Let’s say x0\mathbf{x} \ne \mathbf{0}. Then, since TT is a linear transformation, the following holds.

T(x)x=1xT(x)=1xT(x)=T(xx) \begin{align*} \dfrac{ | T(\mathbf{x}) |}{|\mathbf{x}|} &= \dfrac{1}{|\mathbf{x}|}|T(\mathbf{x})| \\ &= \left| \dfrac{1}{|\mathbf{x}|} T(\mathbf{x}) \right| \\ &= \left| T\left( \dfrac{\mathbf{x}}{|\mathbf{x}|} \right) \right| \end{align*}

Then, since xx=1\left| \dfrac{\mathbf{x}}{|\mathbf{x}|} \right| = 1, by the definition of T\| T \|, the following holds.

T(x)xT    T(x)Tx,xRn \begin{align*} && \dfrac{ | T(\mathbf{x}) |}{|\mathbf{x}|} &\le \| T \| \\ \implies && | T(\mathbf{x}) | &\le \| T \| |\mathbf{x}|,\quad \forall \mathbf{x} \in \mathbb{R}^{n} \end{align*}

(b)

Let’s consider {e1,,en}\left\{ \mathbf{e}_{1}, \dots, \mathbf{e}_{n} \right\} as the standard basis of Rn\mathbb{R}^{n}. Then, for xRn\mathbf{x} \in \mathbb{R}^{n} which is x1| \mathbf{x} | \le 1, the following holds.

x=cieiandci1 \mathbf{x} = \sum c_{i}\mathbf{e}_{i} \quad \text{and} \quad |c_{i}| \le 1

Then, since TT is a linear transformation, the following holds.

T(x)=T(i=1nciei)=i=1nciT(ei)i=1nciT(ei)i=1nT(ei) | T (\mathbf{x}) | = \left| T \left( \sum _{i=1}^{n} c_{i} \mathbf{e}_{i} \right) \right| = \left| \sum _{i=1}^{n} c_{i} T \left(\mathbf{e}_{i} \right) \right| \le \sum _{i=1}^{n} | c_{i} | | T (\mathbf{e}_{i}) | \le \sum _{i=1}^{n} | T (\mathbf{e}_{i}) |

Therefore, we obtain the following.

Ti=1nT(ei)< \| T \| \le \sum _{i=1}^{n} | T (\mathbf{e}_{i}) | < \infty

By (a), for x,yRn\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}, the following holds.

T(x)T(y)Txy |T(\mathbf{x}) - T(\mathbf{y})| \le \| T \| | \mathbf{x} - \mathbf{y} |

Let’s assume ε>0\varepsilon > 0. Let’s say δ=εT\delta = \dfrac{\varepsilon}{\| T \|}. Then, since the following holds, TT is uniformly continuous.

xy<δ    T(x)T(y)Txy=TεT=ε | \mathbf{x} - \mathbf{y} | < \delta \implies |T(\mathbf{x}) - T(\mathbf{y})| \le \| T \| | \mathbf{x} - \mathbf{y} | = \| T \| \dfrac{\varepsilon}{\| T \|} = \varepsilon

(c)

By (a), the following holds.

(T2T1)(x)=T2(T1(x))T2T1(x)T2T1x | (T_{2}\circ T_{1}) (\mathbf{x}) | = | T_{2} (T_{1} (\mathbf{x})) | \le \| T_{2} \| |T_{1} (\mathbf{x}) | \le \| T_{2} \| \|T_{1}\| | \mathbf{x} |

Therefore, we obtain the following.

T2T1T2T1 \| T_{2} \circ T_{1} \| \le \| T_{2} \| \|T_{1}\|


  1. Walter Rudin, Principles of Mathmatical Analysis (3rd Edition, 1976), p208 ↩︎