logo

The Basis of the Domain Generates the Image of the Linear Transformation 📂Linear Algebra

The Basis of the Domain Generates the Image of the Linear Transformation

Theorem1

Let’s suppose we have a given linear transformation T:VWT : V \to W. Assume VV is finite-dimensional, and let S={v1,v2,,vn}S = \left\{ \mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{n} \right\} be a basis of VV. Then, the image of any vV\mathbf{v} \in V can be represented as follows.

T(v)=c1T(v1)+c2T(v2)+cnT(vn) T(\mathbf{v}) = c_{1}T(\mathbf{v}_{1}) + c_{2}T(\mathbf{v}_{2}) + \cdots c_{n}T(\mathbf{v}_{n})

Here, cic_{i} are coefficients that satisfy v=civi\mathbf{v} = \sum c_{i}\mathbf{v}_{i}. In other words, {T(vi)}\left\{ T(\mathbf{v}_{i}) \right\} generates the range of TT.

R(T)=span(T(S))=span({T(v1),T(v2),,T(vn)}) R(T) = \span( T(S) ) = \span \left( \left\{ T(\mathbf{v}_{1}), T(\mathbf{v}_{2}), \dots, T(\mathbf{v}_{n}) \right\} \right)

Explanation

This means knowing how the bases transform under the linear transformation TT allows us to know the image of all vV\mathbf{v} \in V.

Proof

By the Uniqueness of Basis Representation, for all vV\mathbf{v} \in V, the following linear combination uniquely exists.

v=c1v1+c2v2++cnvn \mathbf{v} = c_{1}\mathbf{v}_{1} + c_{2}\mathbf{v}_{2} + \cdots + c_{n}\mathbf{v}_{n}

Then, due to the linearity of TT, the following holds true.

T(v)=T(c1v1+c2v2+cnvn)=T(c1v1)+T(c2v2)++T(cnvn)=c1T(v1)+c2T(v2)++cnT(vn) \begin{align*} T ( \mathbf{v} ) &= T( c_{1}\mathbf{v}_{1} + c_{2}\mathbf{v}_{2} + \cdots c_{n}\mathbf{v}_{n} ) \\ &= T( c_{1}\mathbf{v}_{1} ) + T( c_{2}\mathbf{v}_{2} ) + \cdots + T( c_{n}\mathbf{v}_{n} ) \\ &= c_{1}T(\mathbf{v}_{1} ) + c_{2}T( \mathbf{v}_{2} ) + \cdots + c_{n}T( \mathbf{v}_{n} ) \end{align*}


  1. Howard Anton, Elementary Linear Algebra: Applications Version (12th Edition, 2019), p450 ↩︎