logo

Discrete Fourier Inversion 📂Fourier Analysis

Discrete Fourier Inversion

Formula1

Let’s denote the Discrete Fourier Transform of a=(a0,a1,,aN1)CN\mathbf{a} = (a_{0}, a_{1}, \dots, a_{N-1}) \in \mathbb{C}^{N} as a^=(a^0,a^1,,a^N1)CN\hat{\mathbf{a}} = (\hat{a}_{0}, \hat{a}_{1}, \dots, \hat{a}_{N-1}) \in \mathbb{C}^{N}.

FN(a)=a^,a^m=n=0N1ei2πmn/Nan \mathcal{F}_{N}(\mathbf{a}) = \hat{\mathbf{a}},\quad \hat{a}_{m}=\sum_{n=0}^{N-1}e^{-i2\pi mn /N}a_{n}

Then, the following holds.

an=1Nm=0N1ei2πmn/Na^m a_{n} = \dfrac{1}{N} \sum \limits_{m=0}^{N-1} e^{i 2 \pi m n / N} \hat{a}_{m}

Explanation

This is known as the inverse formula for discrete Fourier transform.

Proof

Lemma

For m=0,1,,N1m = 0, 1, \dots, N-1, let’s set it as follows.

em=(1,ei2πm/N,ei2π2m/N,,ei2π(N1)m/N) \mathbf{e}_{m} = \left( 1, e^{i 2\pi m/N}, e^{i 2\pi 2m/N}, \dots, e^{i 2\pi (N-1)m/N} \right)

Then, {em}m=0N1\left\{ \mathbf{e}_{m} \right\}_{m=0}^{N-1} is a basis of CN\mathbb{C}^{N}, and em2=N\left\| \mathbf{e}_{m} \right\|^{2} = N holds.

Following the lemma, for any aCN\mathbf{a} \in \mathbb{C}^{N} the following is true.

a=1Nm=0N1a,emem \mathbf{a} = \dfrac{1}{N} \sum _{m=0}^{N-1} \left\langle \mathbf{a}, \mathbf{e}_{m} \right\rangle \mathbf{e}_{m}

Calculating the inner product a,em\left\langle \mathbf{a}, \mathbf{e}_{m} \right\rangle, by the definition of the discrete Fourier transform, it follows that.

a,em=n=0N1anei2πnm/N=a^m \left\langle \mathbf{a}, \mathbf{e}_{m} \right\rangle = \sum _{n=0}^{N-1} a_{n}e^{i 2\pi nm/ N} = \hat{a}_{m}

Substituting this into the above equation yields the following.

a=1Nm=0N1a^mem \mathbf{a} = \dfrac{1}{N} \sum _{m=0}^{N-1} \hat{a}_{m} \mathbf{e}_{m}

an=1Nm=0N1ei2πmn/Na^m a_{n} = \dfrac{1}{N} \sum _{m=0}^{N-1} e^{i 2\pi m n / N} \hat{a}_{m}


  1. Gerald B. Folland, Fourier Analysis and Its Applications (1992), p251-252 ↩︎