Discrete Fourier Inversion
Formula1
Let’s denote the Discrete Fourier Transform of $\mathbf{a} = (a_{0}, a_{1}, \dots, a_{N-1}) \in \mathbb{C}^{N}$ as $\hat{\mathbf{a}} = (\hat{a}_{0}, \hat{a}_{1}, \dots, \hat{a}_{N-1}) \in \mathbb{C}^{N}$.
$$ \mathcal{F}_{N}(\mathbf{a}) = \hat{\mathbf{a}},\quad \hat{a}_{m}=\sum_{n=0}^{N-1}e^{-i2\pi mn /N}a_{n} $$
Then, the following holds.
$$ a_{n} = \dfrac{1}{N} \sum \limits_{m=0}^{N-1} e^{i 2 \pi m n / N} \hat{a}_{m} $$
Explanation
This is known as the inverse formula for discrete Fourier transform.
Proof
Lemma
For $m = 0, 1, \dots, N-1$, let’s set it as follows.
$$ \mathbf{e}_{m} = \left( 1, e^{i 2\pi m/N}, e^{i 2\pi 2m/N}, \dots, e^{i 2\pi (N-1)m/N} \right) $$
Then, $\left\{ \mathbf{e}_{m} \right\}_{m=0}^{N-1}$ is a basis of $\mathbb{C}^{N}$, and $\left\| \mathbf{e}_{m} \right\|^{2} = N$ holds.
Following the lemma, for any $\mathbf{a} \in \mathbb{C}^{N}$ the following is true.
$$ \mathbf{a} = \dfrac{1}{N} \sum _{m=0}^{N-1} \left\langle \mathbf{a}, \mathbf{e}_{m} \right\rangle \mathbf{e}_{m} $$
Calculating the inner product $\left\langle \mathbf{a}, \mathbf{e}_{m} \right\rangle$, by the definition of the discrete Fourier transform, it follows that.
$$ \left\langle \mathbf{a}, \mathbf{e}_{m} \right\rangle = \sum _{n=0}^{N-1} a_{n}e^{i 2\pi nm/ N} = \hat{a}_{m} $$
Substituting this into the above equation yields the following.
$$ \mathbf{a} = \dfrac{1}{N} \sum _{m=0}^{N-1} \hat{a}_{m} \mathbf{e}_{m} $$
$$ a_{n} = \dfrac{1}{N} \sum _{m=0}^{N-1} e^{i 2\pi m n / N} \hat{a}_{m} $$
■
Gerald B. Folland, Fourier Analysis and Its Applications (1992), p251-252 ↩︎