Expectation Value of Speed and Velocity of Gas Molecules
📂Thermal Physics Expectation Value of Speed and Velocity of Gas Molecules Let’s denote the velocity of gas molecules as v = ( v x , v y , v z ) \mathbf{v} = (v_{x}, v_{y}, v_{z}) v = ( v x , v y , v z ) and their speed as v = ∣ v ∣ v = | \mathbf{v} | v = ∣ v ∣ . The expected values of velocity and speed of gas molecules are as follows.
⟨ v x ⟩ = 0 ⟨ ∣ v x ∣ ⟩ = 2 k B T π m ⟨ v x 2 ⟩ = k B T π m ⟨ v ⟩ = 8 k B T π m ⟨ v 2 ⟩ = 3 k B T π m
\begin{align*}
\left\langle v_{x} \right\rangle &= 0
\\ \left\langle |v_{x}| \right\rangle &= \sqrt{\dfrac{2 k_{B} T}{\pi m}}
\\ \left\langle v_{x} ^{2} \right\rangle &= \dfrac{k_{B} T}{\pi m}
\\ \left\langle v \right\rangle &= \sqrt{\dfrac{8 k_{B} T}{\pi m}}
\\ \left\langle v^{2} \right\rangle &= \dfrac{3 k_{B} T}{\pi m}
\end{align*}
⟨ v x ⟩ ⟨ ∣ v x ∣ ⟩ ⟨ v x 2 ⟩ ⟨ v ⟩ ⟨ v 2 ⟩ = 0 = πm 2 k B T = πm k B T = πm 8 k B T = πm 3 k B T
Explanation The proof uses the following generalized Gaussian integral formula .
∫ − ∞ ∞ x e − α x 2 d x = 0
\begin{equation}
\int_{-\infty}^{\infty} xe^{-\alpha x^{2}}dx = 0
\end{equation}
∫ − ∞ ∞ x e − α x 2 d x = 0
∫ 0 ∞ x e − α x 2 d x = 1 2 α
\begin{equation}
\int_{0}^{\infty} x e^{-\alpha x^{2}}dx = \dfrac{1}{2 \alpha}
\end{equation}
∫ 0 ∞ x e − α x 2 d x = 2 α 1
∫ − ∞ ∞ x 2 e − α x 2 d x = 1 2 π α 3
\begin{equation}
\int_{-\infty}^{\infty} x^{2} e^{-\alpha x^{2}}dx = \dfrac{1}{2}\sqrt{\dfrac{\pi}{\alpha^{3}}}
\end{equation}
∫ − ∞ ∞ x 2 e − α x 2 d x = 2 1 α 3 π
∫ 0 ∞ x 3 e − α x 2 d x = 1 2 α 2
\begin{equation}
\int_{0}^{\infty} x^{3} e^{-\alpha x^{2}}dx = \dfrac{1}{2 \alpha^{2}}
\end{equation}
∫ 0 ∞ x 3 e − α x 2 d x = 2 α 2 1
Proof Expectation
When a variable is x x x , and the probability density function of x x x is f ( x ) f(x) f ( x ) , the expectation of x x x is as follows.
⟨ x ⟩ = ∫ x f ( x ) d x
\left\langle x \right\rangle = \int x f(x) dx
⟨ x ⟩ = ∫ x f ( x ) d x
We calculate directly from the definition of expectation.
The probability density function of velocity is as follows .
g ( v x ) = m 2 π k B T e − m v x 2 / 2 k B T
g(v_{x}) = \sqrt{ {m} \over {2 \pi k_{B} T } } e^{ - m v_{x}^2 / 2 k_{B} T}
g ( v x ) = 2 π k B T m e − m v x 2 /2 k B T
From the definition of expectation and the Gaussian integral formula ( 1 ) − ( 4 ) (1)-(4) ( 1 ) − ( 4 ) , it is easily calculated.
⟨ v x ⟩ = ∫ v x g ( v x ) d y x = m 2 π k B T ∫ − ∞ ∞ v x e − m v x 2 / 2 k B T d v x = 0
\left\langle v_{x} \right\rangle = \int v_{x} g(v_{x})dy_{x} = \sqrt{ \dfrac{m}{2 \pi k_{B} T}} \int_{-\infty}^{\infty} v_{x} e^{ - m v_{x}^2 / 2 k_{B} T}dv_{x} = 0
⟨ v x ⟩ = ∫ v x g ( v x ) d y x = 2 π k B T m ∫ − ∞ ∞ v x e − m v x 2 /2 k B T d v x = 0
⟨ ∣ v x ∣ ⟩ = ∫ − ∞ ∞ ∣ v x ∣ g ( v x ) d y x = m 2 π k B T ∫ − ∞ ∞ ∣ v x ∣ e − m v x 2 / 2 k B T d v x = 2 m 2 π k B T ∫ 0 ∞ v x e − m v x 2 / 2 k B T d v x = m 2 π k B T 2 k B T m = 2 k B T π m
\begin{align*}
\left\langle \left| v_{x} \right| \right\rangle =&\ \int_{-\infty}^{\infty} \left| v_{x} \right| g(v_{x})dy_{x}
\\ =&\ \sqrt{ \dfrac{m}{2 \pi k_{B} T}} \int_{-\infty}^{\infty} \left| v_{x} \right| e^{ - m v_{x}^2 / 2 k_{B} T}dv_{x}
\\ =&\ 2\sqrt{ \dfrac{m}{2 \pi k_{B} T}}\int_{0}^{\infty} v_{x} e^{ - m v_{x}^2 / 2 k_{B} T}dv_{x}
\\ =&\ \sqrt{ \dfrac{m}{2 \pi k_{B} T}} \dfrac{2 k_{B} T}{m}
\\ =&\ \sqrt{\dfrac{2 k_{B} T}{\pi m}}
\end{align*}
⟨ ∣ v x ∣ ⟩ = = = = = ∫ − ∞ ∞ ∣ v x ∣ g ( v x ) d y x 2 π k B T m ∫ − ∞ ∞ ∣ v x ∣ e − m v x 2 /2 k B T d v x 2 2 π k B T m ∫ 0 ∞ v x e − m v x 2 /2 k B T d v x 2 π k B T m m 2 k B T πm 2 k B T
⟨ v x 2 ⟩ = ∫ − ∞ ∞ v x 2 g ( v x ) d y x = m 2 π k B T ∫ − ∞ ∞ v x 2 e − m v x 2 / 2 k B T d v x = m 2 π k B T π 2 ( 2 k B T m ) 3 = k B T m
\begin{align*}
\left\langle v_{x}^{2} \right\rangle =&\ \int_{-\infty}^{\infty} v_{x}^{2} g(v_{x})dy_{x}
\\ =&\ \sqrt{ \dfrac{m}{2 \pi k_{B} T}} \int_{-\infty}^{\infty} v_{x}^{2} e^{ - m v_{x}^2 / 2 k_{B} T}dv_{x}
\\ =&\ \sqrt{ \dfrac{m}{2 \pi k_{B} T}} \dfrac{\sqrt{\pi}}{2} \left( \sqrt{\dfrac{2 k_{B} T}{m}} \right)^{3}
\\ =&\ \dfrac{k_{B} T}{m}
\end{align*}
⟨ v x 2 ⟩ = = = = ∫ − ∞ ∞ v x 2 g ( v x ) d y x 2 π k B T m ∫ − ∞ ∞ v x 2 e − m v x 2 /2 k B T d v x 2 π k B T m 2 π ( m 2 k B T ) 3 m k B T
The probability density function of speed follows the Maxwell distribution .
f ( v ) = 4 π ( m 2 k B T ) 3 / 2 v 2 e − m v 2 / 2 k B T
f(v) = \dfrac{4}{\sqrt{\pi}} \left( \dfrac{m}{2 k_{B} T} \right)^{3/2} v^{2} e^{-m v^{2} /2 k_{B} T}
f ( v ) = π 4 ( 2 k B T m ) 3/2 v 2 e − m v 2 /2 k B T
Therefore, the expectation is calculated as follows.
⟨ v ⟩ = ∫ 0 ∞ v f ( v ) d v = ∫ 0 ∞ 4 π ( m 2 k B T ) 3 / 2 v 3 e − m v 2 / 2 k B T d v = 4 π ( m 2 k B T ) 3 / 2 ∫ 0 ∞ v 3 e − m v 2 / 2 k B T d v = 4 π ( m 2 k B T ) 3 / 2 1 2 ( 2 k B T m ) 2 = 4 π m 2 k B T ( m 2 k B T ) 1 2 ( 2 k B T m ) 2 = 1 π 2 8 2 5 m 3 m 4 k B 4 k B 3 T 4 T 3 = 2 3 k B T π m = 8 k B T π m
\begin{align*}
\left\langle v \right\rangle =&\ \int_{0}^{\infty} v f(v) dv
\\ =&\ \int_{0}^{\infty} \dfrac{4}{\sqrt{\pi}} \left( \dfrac{m}{2 k_{B} T} \right)^{3/2} v^{3} e^{-m v^{2} /2 k_{B} T} dv
\\ =&\ \dfrac{4}{\sqrt{\pi}} \left( \dfrac{m}{2 k_{B} T} \right)^{3/2} \int_{0}^{\infty} v^{3} e^{-m v^{2} /2 k_{B} T} dv
\\ =&\ \dfrac{4}{\sqrt{\pi}} \left( \dfrac{m}{2 k_{B} T} \right)^{3/2} \dfrac{1}{2} \left( \dfrac{2 k_{B} T}{m} \right)^{2}
\\ =&\ \dfrac{4}{\sqrt{\pi}} \sqrt{\dfrac{m}{2 k_{B} T} } \left( \dfrac{m}{2 k_{B} T} \right) \dfrac{1}{2} \left( \dfrac{2 k_{B} T}{m} \right)^{2}
\\ =&\ \sqrt{\dfrac{1}{\pi} \dfrac{2^{8}}{2^{5}} \dfrac{m^{3}}{m^{4}} \dfrac{k_{B}^{4}}{k_{B}^{3}} \dfrac{T^{4}}{T^{3}} }
\\ =&\ \sqrt{\dfrac{2^{3} k_{B} T}{\pi m }}
\\ =&\ \sqrt{\dfrac{8 k_{B} T}{\pi m }}
\end{align*}
⟨ v ⟩ = = = = = = = = ∫ 0 ∞ v f ( v ) d v ∫ 0 ∞ π 4 ( 2 k B T m ) 3/2 v 3 e − m v 2 /2 k B T d v π 4 ( 2 k B T m ) 3/2 ∫ 0 ∞ v 3 e − m v 2 /2 k B T d v π 4 ( 2 k B T m ) 3/2 2 1 ( m 2 k B T ) 2 π 4 2 k B T m ( 2 k B T m ) 2 1 ( m 2 k B T ) 2 π 1 2 5 2 8 m 4 m 3 k B 3 k B 4 T 3 T 4 πm 2 3 k B T πm 8 k B T
Since expectation is linear, the expectation of the square of speed is as follows.
⟨ v 2 ⟩ = ⟨ v x 2 ⟩ + ⟨ v y 2 ⟩ + ⟨ v z 2 ⟩ = k B T π m + k B T π m + k B T π m = 3 k B T π m
\left\langle v^{2} \right\rangle = \left\langle v_{x}^{2} \right\rangle + \left\langle v_{y}^{2} \right\rangle + \left\langle v_{z}^{2} \right\rangle = \dfrac{k_{B} T}{\pi m} + \dfrac{k_{B} T}{\pi m} + \dfrac{k_{B} T}{\pi m} = \dfrac{3k_{B} T}{\pi m}
⟨ v 2 ⟩ = ⟨ v x 2 ⟩ + ⟨ v y 2 ⟩ + ⟨ v z 2 ⟩ = πm k B T + πm k B T + πm k B T = πm 3 k B T
■