Heisenberg Uncertainty Principle
📂Fourier Analysis Heisenberg Uncertainty Principle Buildup There exists a special relationship between f f f and its Fourier transform f ^ \hat{f} f ^ . If for some constant Ω \Omega Ω , f ^ ( ω ) = 0 f o r ∣ ω ∣ ≥ Ω \hat{f} (\omega) = 0\ for\ | \omega | \ge \Omega f ^ ( ω ) = 0 f or ∣ ω ∣ ≥ Ω holds, then it is not possible for f f f to exhibit the same property. In other words, it indicates that both f f f and f ^ \hat{f} f ^ cannot be concentrated in a narrow location simultaneously, mathematically speaking, this means f f f and f ^ \hat{f} f ^ cannot both have a finite narrow support at the same time, and statistically, it implies that the variances of f f f and f ^ \hat{f} f ^ cannot both be small at the same time.
This fact can be seen in the following property of the Fourier transform .
F [ f ( δ x ) ] ( ξ ) = 1 δ f ^ ( ξ δ ) , δ > 0
\mathcal{F} \left[ f(\delta x) \right] (\xi) = \dfrac{1}{\delta} \hat{f} \left( \dfrac{\xi}{\delta} \right),\quad \delta > 0
F [ f ( δ x ) ] ( ξ ) = δ 1 f ^ ( δ ξ ) , δ > 0
In the equation above, if δ \delta δ increases, it means that f f f is being compressed closer to the origin, while at the same time, f ^ \hat{f} f ^ is spreading out. If δ \delta δ decreases, the opposite occurs.
Before introducing the theorem, let’s introduce a new notation. Let’s define the dispersion of function f f f at a a a as follows.
Δ a f : = ∫ ( x − a ) 2 ∣ f ( x ) ∣ 2 d x ∫ ∣ f ( x ) ∣ 2 d x
\Delta_{a} f: =\frac{\displaystyle \int(x-a)^{2}|f(x)|^{2} d x}{\displaystyle \int|f(x)|^{2} d x}
Δ a f := ∫ ∣ f ( x ) ∣ 2 d x ∫ ( x − a ) 2 ∣ f ( x ) ∣ 2 d x
This represents how spread out the values of f f f are around a a a . A large value of Δ a f \Delta _{a} f Δ a f means that f f f hardly takes any large values near a a a , and conversely, a small value of Δ a f \Delta _{a} f Δ a f means that f f f takes a lot of large values near a a a . Therefore, the statement that f f f and f ^ \hat{f} f ^ cannot both be concentrated in a narrow interval means that there is a limit to both Δ a f \Delta_{a}f Δ a f and Δ α f ^ \Delta_{\alpha}\hat{f} Δ α f ^ values being small for all a , α ∈ R a, \alpha \in \mathbb{R} a , α ∈ R .
In a nutshell, as the value of f f f becomes certain, the value of f ^ \hat{f} f ^ becomes uncertain, and vice versa. If you are familiar with statistics, you can understand Δ a f \Delta_{a}f Δ a f as the variance of a random variable with a mean of a a a and probability density function of ∣ f ( x ) ∣ 2 |f(x)|^{2} ∣ f ( x ) ∣ 2 .
This content is expressed in the following theorem.
Theorem If f ′ f^{\prime} f ′ is piecewise continuous, and f ( x ) , x f ( x ) , f ′ ( x ) ∈ L 2 f(x), xf(x), f^{\prime}(x) \in L^{2} f ( x ) , x f ( x ) , f ′ ( x ) ∈ L 2 holds, then the following inequality is valid.
( Δ a f ) ( Δ α f ^ ) ≥ 1 4 , ∀ a , α ∈ R
\left( \Delta_{a} f \right) ( \Delta_{\alpha} \hat{f} ) \ge \dfrac{1}{4},\quad \forall a,\alpha \in \mathbb{R}
( Δ a f ) ( Δ α f ^ ) ≥ 4 1 , ∀ a , α ∈ R
Proof a = α = 0 a=\alpha=0 a = α = 0 Let’s first consider the case of a = α = 0 a=\alpha=0 a = α = 0 . By integration by parts , we obtain the following equation.
∫ A B x f ( x ) ‾ f ′ ( x ) d x = x ∣ f ( x ) ∣ 2 ∣ A B − ∫ A B ( ∣ f ( x ) ∣ 2 + x f ( x ) f ′ ( x ) ‾ ) d x
\int_{A}^{B} \overline{xf(x)} f^{\prime}(x) dx = x|f(x)|^{2} \bigg|_{A} ^{B}-\int_{A}^{B}\left(|f(x)|^{2} + x f(x) \overline{f^{\prime}(x)}\right) dx
∫ A B x f ( x ) f ′ ( x ) d x = x ∣ f ( x ) ∣ 2 A B − ∫ A B ( ∣ f ( x ) ∣ 2 + x f ( x ) f ′ ( x ) ) d x
This can be simplified as follows.
∫ A B ∣ f ( x ) ∣ 2 d x = x ∣ f ( x ) ∣ 2 ∣ A B − ∫ A B x f ( x ) f ′ ( x ) ‾ d x − ∫ A B x f ( x ) ‾ f ′ ( x ) d x = x ∣ f ( x ) ∣ 2 ∣ A B − 2 Re ∫ A B x f ( x ) f ′ ( x ) ‾ d x
\begin{align*}
\int_{A}^{B} |f(x)|^{2} dx &= x|f(x)|^{2} \bigg|_{A} ^{B} - \int_{A}^{B} xf(x) \overline{f^{\prime}(x)}dx - \int_{A}^{B} \overline{xf(x)} f^{\prime}(x) dx
\\ &= x|f(x)|^{2} \bigg|_{A} ^{B} - 2 \text{Re} \int_{A}^{B} xf(x) \overline{f^{\prime}(x)}dx
\end{align*}
∫ A B ∣ f ( x ) ∣ 2 d x = x ∣ f ( x ) ∣ 2 A B − ∫ A B x f ( x ) f ′ ( x ) d x − ∫ A B x f ( x ) f ′ ( x ) d x = x ∣ f ( x ) ∣ 2 A B − 2 Re ∫ A B x f ( x ) f ′ ( x ) d x
Since we assumed x f ( x ) ∈ L 2 xf(x) \in L^{2} x f ( x ) ∈ L 2 , lim x → ± ∞ x f 2 ( x ) ≤ lim x → ± ∞ x 2 f 2 ( x ) = 0 \lim \limits_{x \to \pm \infty}xf^{2}(x) \le \lim \limits_{x \to \pm \infty} x^{2}f^{2}(x) = 0 x → ± ∞ lim x f 2 ( x ) ≤ x → ± ∞ lim x 2 f 2 ( x ) = 0 holds. Thus, taking the limit of B → ∞ , A → − ∞ B\to \infty, A \to -\infty B → ∞ , A → − ∞ in the equation above results in the following.
∫ − ∞ ∞ ∣ f ( x ) ∣ 2 d x = − 2 Re ∫ − ∞ ∞ x f ( x ) f ′ ( x ) ‾ d x
\int_{-\infty}^{\infty} |f(x)|^{2} dx = - 2 \text{Re} \int_{-\infty}^{\infty} xf(x) \overline{f^{\prime}(x)}dx
∫ − ∞ ∞ ∣ f ( x ) ∣ 2 d x = − 2 Re ∫ − ∞ ∞ x f ( x ) f ′ ( x ) d x
Then, by the Cauchy-Schwarz inequality , the following equation holds.
∫ − ∞ ∞ ∣ f ( x ) ∣ 2 d x ≤ 2 Re ( ∫ − ∞ ∞ x 2 ∣ f ( x ) ∣ 2 d x ) 1 2 ( ∫ − ∞ ∞ ∣ f ′ ( x ) ∣ 2 d x ) 1 2 ⟹ ( ∫ − ∞ ∞ ∣ f ( x ) ∣ 2 d x ) 2 ≤ 4 ( ∫ − ∞ ∞ x 2 ∣ f ( x ) ∣ 2 d x ) ( ∫ − ∞ ∞ ∣ f ′ ( x ) ∣ 2 d x )
\begin{align}
\int_{-\infty}^{\infty} |f(x)|^{2} dx &\le 2 \text{Re} \left( \int_{-\infty}^{\infty} x^{2} |f(x)|^{2} dx \right)^{\frac{1}{2}} \left( \int_{-\infty}^{\infty} |f^{\prime}(x)|^{2} dx\right)^{\frac{1}{2}} \nonumber
\\ \implies \left( \int_{-\infty}^{\infty} |f(x)|^{2} dx \right)^{2} &\le 4 \left( \int_{-\infty}^{\infty} x^{2} |f(x)|^{2} dx \right) \left( \int_{-\infty}^{\infty} |f^{\prime}(x)|^{2} dx\right) \label{eq1}
\end{align}
∫ − ∞ ∞ ∣ f ( x ) ∣ 2 d x ⟹ ( ∫ − ∞ ∞ ∣ f ( x ) ∣ 2 d x ) 2 ≤ 2 Re ( ∫ − ∞ ∞ x 2 ∣ f ( x ) ∣ 2 d x ) 2 1 ( ∫ − ∞ ∞ ∣ f ′ ( x ) ∣ 2 d x ) 2 1 ≤ 4 ( ∫ − ∞ ∞ x 2 ∣ f ( x ) ∣ 2 d x ) ( ∫ − ∞ ∞ ∣ f ′ ( x ) ∣ 2 d x )
Then, by Plancherel’s theorem ∥ f ^ ∥ 2 = 2 π ∥ f ∥ 2 \| \hat{f} \|^{2} = 2\pi \| f \| ^{2} ∥ f ^ ∥ 2 = 2 π ∥ f ∥ 2 is true, and the Fourier transform of the derivative is F [ f ′ ] ( ξ ) = i ξ F f ( ξ ) \mathcal{F} \left[ f^{\prime} \right] (\xi) = i \xi \mathcal{F} f (\xi) F [ f ′ ] ( ξ ) = i ξ F f ( ξ ) , thus the following holds.
∫ − ∞ ∞ ∣ f ′ ( x ) ∣ 2 d x = 1 2 π ∫ − ∞ ∞ ∣ F [ f ′ ] ( ξ ) ∣ 2 d ξ = 1 2 π ∫ − ∞ ∞ ξ 2 ∣ f ^ ( ξ ) ∣ 2 d ξ
\int_{-\infty}^{\infty} |f^{\prime}(x)|^{2} dx = \dfrac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{F}[f^{\prime}] (\xi)|^{2} d\xi = \dfrac{1}{2\pi} \int_{-\infty}^{\infty} \xi^{2} | \hat{f} (\xi)|^{2} d\xi
∫ − ∞ ∞ ∣ f ′ ( x ) ∣ 2 d x = 2 π 1 ∫ − ∞ ∞ ∣ F [ f ′ ] ( ξ ) ∣ 2 d ξ = 2 π 1 ∫ − ∞ ∞ ξ 2 ∣ f ^ ( ξ ) ∣ 2 d ξ
Substituting this in for ( eq1 ) \eqref{eq1} ( eq1 ) results in the following.
( ∫ − ∞ ∞ ∣ f ( x ) ∣ 2 d x ) 2 ≤ 4 ( ∫ − ∞ ∞ x 2 ∣ f ( x ) ∣ 2 d x ) 1 2 π ∫ − ∞ ∞ ξ 2 ∣ f ^ ( ξ ) ∣ 2 d ξ
\left( \int_{-\infty}^{\infty} |f(x)|^{2} dx \right)^{2} \le 4 \left( \int_{-\infty}^{\infty} x^{2} |f(x)|^{2} dx \right) \dfrac{1}{2\pi} \int_{-\infty}^{\infty} \xi^{2} | \hat{f} (\xi)|^{2} d\xi
( ∫ − ∞ ∞ ∣ f ( x ) ∣ 2 d x ) 2 ≤ 4 ( ∫ − ∞ ∞ x 2 ∣ f ( x ) ∣ 2 d x ) 2 π 1 ∫ − ∞ ∞ ξ 2 ∣ f ^ ( ξ ) ∣ 2 d ξ
Furthermore, expressing Plancherel’s theorem in integral form gives ∫ ∣ f ( x ) ∣ 2 d x = 1 2 π ∫ ∣ f ^ ( ξ ) ∣ 2 d ξ \int |f(x)|^{2}dx = \frac{1}{2\pi} \int |\hat{f}(\xi)|^{2} d\xi ∫ ∣ f ( x ) ∣ 2 d x = 2 π 1 ∫ ∣ f ^ ( ξ ) ∣ 2 d ξ , thus substituting this into the left side of the equation results in the following.
( ∫ − ∞ ∞ ∣ f ( x ) ∣ 2 d x ) ( ∫ − ∞ ∞ ∣ f ^ ( ξ ) ∣ 2 d ξ ) ≤ 4 ( ∫ − ∞ ∞ x 2 ∣ f ( x ) ∣ 2 d x ) ( ∫ − ∞ ∞ ξ 2 ∣ f ^ ( ξ ) ∣ 2 d ξ )
\left( \int_{-\infty}^{\infty} |f(x)|^{2} dx \right) \left( \int_{-\infty}^{\infty} |\hat{f}(\xi)|^{2} d\xi \right) \le 4 \left( \int_{-\infty}^{\infty} x^{2} |f(x)|^{2} dx \right) \left( \int_{-\infty}^{\infty} \xi^{2} | \hat{f} (\xi)|^{2} d\xi \right)
( ∫ − ∞ ∞ ∣ f ( x ) ∣ 2 d x ) ( ∫ − ∞ ∞ ∣ f ^ ( ξ ) ∣ 2 d ξ ) ≤ 4 ( ∫ − ∞ ∞ x 2 ∣ f ( x ) ∣ 2 d x ) ( ∫ − ∞ ∞ ξ 2 ∣ f ^ ( ξ ) ∣ 2 d ξ )
Thus, we obtain the following result.
1 4 ≤ ( ∫ − ∞ ∞ x 2 ∣ f ( x ) ∣ 2 d x ) ( ∫ − ∞ ∞ ∣ f ( x ) ∣ 2 d x ) ( ∫ − ∞ ∞ ξ 2 ∣ f ^ ( ξ ) ∣ 2 d ξ ) ( ∫ − ∞ ∞ ∣ f ^ ( ξ ) ∣ 2 d ξ ) = ( Δ 0 f ) ( Δ 0 f ^ )
\dfrac{1}{4} \le \dfrac{ \left(\displaystyle \int_{-\infty}^{\infty} x^{2} |f(x)|^{2} dx \right) }{ \left(\displaystyle \int_{-\infty}^{\infty} |f(x)|^{2} dx \right) } \dfrac{\left(\displaystyle \int _{-\infty}^{\infty} \xi^{2} | \hat{f} (\xi)|^{2} d\xi \right)}{\left(\displaystyle \int_{-\infty}^{\infty} |\hat{f}(\xi)|^{2} d\xi \right)} = \left( \Delta_{0} f \right) ( \Delta_{0} \hat{f} )
4 1 ≤ ( ∫ − ∞ ∞ ∣ f ( x ) ∣ 2 d x ) ( ∫ − ∞ ∞ x 2 ∣ f ( x ) ∣ 2 d x ) ( ∫ − ∞ ∞ ∣ f ^ ( ξ ) ∣ 2 d ξ ) ( ∫ − ∞ ∞ ξ 2 ∣ f ^ ( ξ ) ∣ 2 d ξ ) = ( Δ 0 f ) ( Δ 0 f ^ )
■
Generalization Let’s assume F ( x ) = e − i α x f ( x + a ) F(x)=e^{-i \alpha x}f(x+a) F ( x ) = e − i αx f ( x + a ) . Then, the following equation holds.
Δ 0 F = ∫ x 2 ∣ F ( x ) ∣ 2 d x ∫ ∣ F ( x ) ∣ 2 d x = ∫ x 2 ∣ f ( x + a ) ∣ 2 d x ∫ ∣ f ( x + a ) ∣ 2 d x = ∫ ( x − a ) 2 ∣ f ( x ) ∣ 2 d x ∫ ∣ f ( x ) ∣ 2 d x ( change of variable x + a = x ) = Δ a f
\begin{align*}
\Delta_{0} F = \dfrac{\displaystyle \int x^{2} |F(x)|^{2} dx}{\displaystyle \int |F(x)|^{2}dx} &= \dfrac{ \displaystyle \int x^{2} |f(x+a)|^{2} dx }{ \displaystyle \int |f(x+a)|^{2}dx}
\\ &= \dfrac{ \displaystyle \int (x-a)^{2} |f(x)|^{2} dx }{ \displaystyle \int |f(x)|^{2}dx} & (\text{change of variable } x
+a=x)
\\ &= \Delta_{a}f
\end{align*}
Δ 0 F = ∫ ∣ F ( x ) ∣ 2 d x ∫ x 2 ∣ F ( x ) ∣ 2 d x = ∫ ∣ f ( x + a ) ∣ 2 d x ∫ x 2 ∣ f ( x + a ) ∣ 2 d x = ∫ ∣ f ( x ) ∣ 2 d x ∫ ( x − a ) 2 ∣ f ( x ) ∣ 2 d x = Δ a f ( change of variable x + a = x )
Now, if we find F ^ \hat{F} F ^ , it results in the following.
F ^ ( ξ ) = ∫ F ( x ) e − i ξ x d x = ∫ f ( x + a ) e − i ( α + ξ ) x d x = ∫ f ( x ) e − i ( α + ξ ) x e i ( α + ξ ) a d x ( change of variable x + a = x ) = e i ( α + ξ ) a ∫ f ( x ) e − i ( α + ξ ) x d x = e i ( α + ξ ) a f ^ ( α + ξ )
\begin{align*}
\hat{F} (\xi) = \int F(x) e^{-i \xi x}dx &= \int f(x+a)e^{-i(\alpha + \xi)x}dx
\\ &= \int f(x)e^{-i(\alpha + \xi)x} e^{i(\alpha + \xi)a} dx & (\text{change of variable } x
+a=x)
\\ &= e^{i(\alpha + \xi)a} \int f(x)e^{-i(\alpha + \xi)x} dx
\\ &= e^{i(\alpha + \xi)a} \hat{f}(\alpha + \xi)
\end{align*}
F ^ ( ξ ) = ∫ F ( x ) e − i ξ x d x = ∫ f ( x + a ) e − i ( α + ξ ) x d x = ∫ f ( x ) e − i ( α + ξ ) x e i ( α + ξ ) a d x = e i ( α + ξ ) a ∫ f ( x ) e − i ( α + ξ ) x d x = e i ( α + ξ ) a f ^ ( α + ξ ) ( change of variable x + a = x )
Now, finding Δ 0 F ^ \Delta_{0}\hat{F} Δ 0 F ^ results in the following.
Δ 0 F ^ = ∫ ξ 2 ∣ F ^ ( ξ ) ∣ 2 d ξ ∫ ∣ F ^ ( ξ ) ∣ 2 d ξ = ∫ ξ 2 ∣ f ^ ( α + ξ ) ∣ 2 d ξ ∫ ∣ f ^ ( α + ξ ) ∣ 2 d ξ = ∫ ( ξ − α ) 2 ∣ f ^ ( ξ ) ∣ 2 d ξ ∫ ∣ f ^ ( ξ ) ∣ 2 d ξ ( change of variable ξ + a = ξ ) = Δ α f ^
\begin{align*}
\Delta_{0}\hat{F} = \dfrac{\displaystyle \int \xi^{2} |\hat{F}(\xi)|^{2} d\xi}{\displaystyle \int |\hat{F}(\xi)|^{2}d\xi} &= \dfrac{\displaystyle \int \xi^{2} | \hat{f}(\alpha + \xi)|^{2} d\xi}{\displaystyle \int | \hat{f}(\alpha + \xi)|^{2}d\xi}
\\ &= \dfrac{\displaystyle \int (\xi-\alpha)^{2} | \hat{f}(\xi)|^{2} d\xi}{\displaystyle \int | \hat{f}(\xi)|^{2}d\xi} & (\text{change of variable } \xi
+a=\xi)
\\ &= \Delta_{\alpha}\hat{f}
\end{align*}
Δ 0 F ^ = ∫ ∣ F ^ ( ξ ) ∣ 2 d ξ ∫ ξ 2 ∣ F ^ ( ξ ) ∣ 2 d ξ = ∫ ∣ f ^ ( α + ξ ) ∣ 2 d ξ ∫ ξ 2 ∣ f ^ ( α + ξ ) ∣ 2 d ξ = ∫ ∣ f ^ ( ξ ) ∣ 2 d ξ ∫ ( ξ − α ) 2 ∣ f ^ ( ξ ) ∣ 2 d ξ = Δ α f ^ ( change of variable ξ + a = ξ )
Therefore, using the result from the case of a = α = 0 a=\alpha=0 a = α = 0 , we obtain the following equation.
1 4 ≤ ( Δ 0 F ) ( Δ α F ^ ) = ( Δ a f ) ( Δ α f ^ )
\dfrac{1}{4} \le (\Delta_{0}F)(\Delta_{\alpha}\hat{F}) = (\Delta_{a}f) (\Delta_{\alpha}\hat{f})
4 1 ≤ ( Δ 0 F ) ( Δ α F ^ ) = ( Δ a f ) ( Δ α f ^ )
■
See Also