logo

Heisenberg Uncertainty Principle 📂Fourier Analysis

Heisenberg Uncertainty Principle

Buildup

There exists a special relationship between ff and its Fourier transform f^\hat{f}. If for some constant Ω\Omega, f^(ω)=0 for ωΩ\hat{f} (\omega) = 0\ for\ | \omega | \ge \Omega holds, then it is not possible for ff to exhibit the same property. In other words, it indicates that both ff and f^\hat{f} cannot be concentrated in a narrow location simultaneously, mathematically speaking, this means ff and f^\hat{f} cannot both have a finite narrow support at the same time, and statistically, it implies that the variances of ff and f^\hat{f} cannot both be small at the same time.

This fact can be seen in the following property of the Fourier transform.

F[f(δx)](ξ)=1δf^(ξδ),δ>0 \mathcal{F} \left[ f(\delta x) \right] (\xi) = \dfrac{1}{\delta} \hat{f} \left( \dfrac{\xi}{\delta} \right),\quad \delta > 0

In the equation above, if δ\delta increases, it means that ff is being compressed closer to the origin, while at the same time, f^\hat{f} is spreading out. If δ\delta decreases, the opposite occurs.

Before introducing the theorem, let’s introduce a new notation. Let’s define the dispersion of function ff at aa as follows.

Δaf:=(xa)2f(x)2dxf(x)2dx \Delta_{a} f: =\frac{\displaystyle \int(x-a)^{2}|f(x)|^{2} d x}{\displaystyle \int|f(x)|^{2} d x}

This represents how spread out the values of ff are around aa. A large value of Δaf\Delta _{a} f means that ff hardly takes any large values near aa, and conversely, a small value of Δaf\Delta _{a} f means that ff takes a lot of large values near aa. Therefore, the statement that ff and f^\hat{f} cannot both be concentrated in a narrow interval means that there is a limit to both Δaf\Delta_{a}f and Δαf^\Delta_{\alpha}\hat{f} values being small for all a,αRa, \alpha \in \mathbb{R}.

In a nutshell, as the value of ff becomes certain, the value of f^\hat{f} becomes uncertain, and vice versa. If you are familiar with statistics, you can understand Δaf\Delta_{a}f as the variance of a random variable with a mean of aa and probability density function of f(x)2|f(x)|^{2}.

This content is expressed in the following theorem.

Theorem

If ff^{\prime} is piecewise continuous, and f(x),xf(x),f(x)L2f(x), xf(x), f^{\prime}(x) \in L^{2} holds, then the following inequality is valid.

(Δaf)(Δαf^)14,a,αR \left( \Delta_{a} f \right) ( \Delta_{\alpha} \hat{f} ) \ge \dfrac{1}{4},\quad \forall a,\alpha \in \mathbb{R}

Proof

a=α=0a=\alpha=0

Let’s first consider the case of a=α=0a=\alpha=0. By integration by parts, we obtain the following equation.

ABxf(x)f(x)dx=xf(x)2ABAB(f(x)2+xf(x)f(x))dx \int_{A}^{B} \overline{xf(x)} f^{\prime}(x) dx = x|f(x)|^{2} \bigg|_{A} ^{B}-\int_{A}^{B}\left(|f(x)|^{2} + x f(x) \overline{f^{\prime}(x)}\right) dx

This can be simplified as follows.

ABf(x)2dx=xf(x)2ABABxf(x)f(x)dxABxf(x)f(x)dx=xf(x)2AB2ReABxf(x)f(x)dx \begin{align*} \int_{A}^{B} |f(x)|^{2} dx &= x|f(x)|^{2} \bigg|_{A} ^{B} - \int_{A}^{B} xf(x) \overline{f^{\prime}(x)}dx - \int_{A}^{B} \overline{xf(x)} f^{\prime}(x) dx \\ &= x|f(x)|^{2} \bigg|_{A} ^{B} - 2 \text{Re} \int_{A}^{B} xf(x) \overline{f^{\prime}(x)}dx \end{align*}

Since we assumed xf(x)L2xf(x) \in L^{2}, limx±xf2(x)limx±x2f2(x)=0\lim \limits_{x \to \pm \infty}xf^{2}(x) \le \lim \limits_{x \to \pm \infty} x^{2}f^{2}(x) = 0 holds. Thus, taking the limit of B,AB\to \infty, A \to -\infty in the equation above results in the following.

f(x)2dx=2Rexf(x)f(x)dx \int_{-\infty}^{\infty} |f(x)|^{2} dx = - 2 \text{Re} \int_{-\infty}^{\infty} xf(x) \overline{f^{\prime}(x)}dx

Then, by the Cauchy-Schwarz inequality, the following equation holds.

f(x)2dx2Re(x2f(x)2dx)12(f(x)2dx)12    (f(x)2dx)24(x2f(x)2dx)(f(x)2dx) \begin{align} \int_{-\infty}^{\infty} |f(x)|^{2} dx &\le 2 \text{Re} \left( \int_{-\infty}^{\infty} x^{2} |f(x)|^{2} dx \right)^{\frac{1}{2}} \left( \int_{-\infty}^{\infty} |f^{\prime}(x)|^{2} dx\right)^{\frac{1}{2}} \nonumber \\ \implies \left( \int_{-\infty}^{\infty} |f(x)|^{2} dx \right)^{2} &\le 4 \left( \int_{-\infty}^{\infty} x^{2} |f(x)|^{2} dx \right) \left( \int_{-\infty}^{\infty} |f^{\prime}(x)|^{2} dx\right) \label{eq1} \end{align}

Then, by Plancherel’s theorem f^2=2πf2\| \hat{f} \|^{2} = 2\pi \| f \| ^{2} is true, and the Fourier transform of the derivative is F[f](ξ)=iξFf(ξ)\mathcal{F} \left[ f^{\prime} \right] (\xi) = i \xi \mathcal{F} f (\xi), thus the following holds.

f(x)2dx=12πF[f](ξ)2dξ=12πξ2f^(ξ)2dξ \int_{-\infty}^{\infty} |f^{\prime}(x)|^{2} dx = \dfrac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{F}[f^{\prime}] (\xi)|^{2} d\xi = \dfrac{1}{2\pi} \int_{-\infty}^{\infty} \xi^{2} | \hat{f} (\xi)|^{2} d\xi

Substituting this in for (eq1)\eqref{eq1} results in the following.

(f(x)2dx)24(x2f(x)2dx)12πξ2f^(ξ)2dξ \left( \int_{-\infty}^{\infty} |f(x)|^{2} dx \right)^{2} \le 4 \left( \int_{-\infty}^{\infty} x^{2} |f(x)|^{2} dx \right) \dfrac{1}{2\pi} \int_{-\infty}^{\infty} \xi^{2} | \hat{f} (\xi)|^{2} d\xi

Furthermore, expressing Plancherel’s theorem in integral form gives f(x)2dx=12πf^(ξ)2dξ\int |f(x)|^{2}dx = \frac{1}{2\pi} \int |\hat{f}(\xi)|^{2} d\xi, thus substituting this into the left side of the equation results in the following.

(f(x)2dx)(f^(ξ)2dξ)4(x2f(x)2dx)(ξ2f^(ξ)2dξ) \left( \int_{-\infty}^{\infty} |f(x)|^{2} dx \right) \left( \int_{-\infty}^{\infty} |\hat{f}(\xi)|^{2} d\xi \right) \le 4 \left( \int_{-\infty}^{\infty} x^{2} |f(x)|^{2} dx \right) \left( \int_{-\infty}^{\infty} \xi^{2} | \hat{f} (\xi)|^{2} d\xi \right)

Thus, we obtain the following result.

14(x2f(x)2dx)(f(x)2dx)(ξ2f^(ξ)2dξ)(f^(ξ)2dξ)=(Δ0f)(Δ0f^) \dfrac{1}{4} \le \dfrac{ \left(\displaystyle \int_{-\infty}^{\infty} x^{2} |f(x)|^{2} dx \right) }{ \left(\displaystyle \int_{-\infty}^{\infty} |f(x)|^{2} dx \right) } \dfrac{\left(\displaystyle \int _{-\infty}^{\infty} \xi^{2} | \hat{f} (\xi)|^{2} d\xi \right)}{\left(\displaystyle \int_{-\infty}^{\infty} |\hat{f}(\xi)|^{2} d\xi \right)} = \left( \Delta_{0} f \right) ( \Delta_{0} \hat{f} )

Generalization

Let’s assume F(x)=eiαxf(x+a)F(x)=e^{-i \alpha x}f(x+a). Then, the following equation holds.

Δ0F=x2F(x)2dxF(x)2dx=x2f(x+a)2dxf(x+a)2dx=(xa)2f(x)2dxf(x)2dx(change of variable x+a=x)=Δaf \begin{align*} \Delta_{0} F = \dfrac{\displaystyle \int x^{2} |F(x)|^{2} dx}{\displaystyle \int |F(x)|^{2}dx} &= \dfrac{ \displaystyle \int x^{2} |f(x+a)|^{2} dx }{ \displaystyle \int |f(x+a)|^{2}dx} \\ &= \dfrac{ \displaystyle \int (x-a)^{2} |f(x)|^{2} dx }{ \displaystyle \int |f(x)|^{2}dx} & (\text{change of variable } x +a=x) \\ &= \Delta_{a}f \end{align*}

Now, if we find F^\hat{F}, it results in the following.

F^(ξ)=F(x)eiξxdx=f(x+a)ei(α+ξ)xdx=f(x)ei(α+ξ)xei(α+ξ)adx(change of variable x+a=x)=ei(α+ξ)af(x)ei(α+ξ)xdx=ei(α+ξ)af^(α+ξ) \begin{align*} \hat{F} (\xi) = \int F(x) e^{-i \xi x}dx &= \int f(x+a)e^{-i(\alpha + \xi)x}dx \\ &= \int f(x)e^{-i(\alpha + \xi)x} e^{i(\alpha + \xi)a} dx & (\text{change of variable } x +a=x) \\ &= e^{i(\alpha + \xi)a} \int f(x)e^{-i(\alpha + \xi)x} dx \\ &= e^{i(\alpha + \xi)a} \hat{f}(\alpha + \xi) \end{align*}

Now, finding Δ0F^\Delta_{0}\hat{F} results in the following.

Δ0F^=ξ2F^(ξ)2dξF^(ξ)2dξ=ξ2f^(α+ξ)2dξf^(α+ξ)2dξ=(ξα)2f^(ξ)2dξf^(ξ)2dξ(change of variable ξ+a=ξ)=Δαf^ \begin{align*} \Delta_{0}\hat{F} = \dfrac{\displaystyle \int \xi^{2} |\hat{F}(\xi)|^{2} d\xi}{\displaystyle \int |\hat{F}(\xi)|^{2}d\xi} &= \dfrac{\displaystyle \int \xi^{2} | \hat{f}(\alpha + \xi)|^{2} d\xi}{\displaystyle \int | \hat{f}(\alpha + \xi)|^{2}d\xi} \\ &= \dfrac{\displaystyle \int (\xi-\alpha)^{2} | \hat{f}(\xi)|^{2} d\xi}{\displaystyle \int | \hat{f}(\xi)|^{2}d\xi} & (\text{change of variable } \xi +a=\xi) \\ &= \Delta_{\alpha}\hat{f} \end{align*}

Therefore, using the result from the case of a=α=0a=\alpha=0, we obtain the following equation.

14(Δ0F)(ΔαF^)=(Δaf)(Δαf^) \dfrac{1}{4} \le (\Delta_{0}F)(\Delta_{\alpha}\hat{F}) = (\Delta_{a}f) (\Delta_{\alpha}\hat{f})

See Also