logo

Fourier Series and Bessel's Inequality 📂Fourier Analysis

Fourier Series and Bessel's Inequality

Formulas

If a function ff defined on the interval [L,L)[-L,L) is Riemann integrable, the following inequality holds, known as the Bessel’s inequality.

14a02+12n=1(an2+bn2)=n=cn212LLLf(t)2dt \dfrac{1}{4}|a_{0}|^{2} +\dfrac{1}{2}\sum\limits_{n=1}^{\infty} \left(|a_{n}|^{2} + |b_{n}|^{2} \right) =\sum \limits_{n=-\infty}^{\infty} | c_{n} |^{2} \le \dfrac{1}{2L}\int_{-L}^{L} | f(t)|^{2} dt

Here, a0, an, bna_{0},\ a_{n},\ b_{n} is the Fourier coefficient of ff, and cnc_{n} is the complex Fourier coefficient of ff.

Proof

For any complex number zz, since z2=zz|z|^{2}= z \overline{z},

0f(t)n=NNcneinπtL2=(f(t)n=NNcneinπtL)(f(t)n=NNcneinπtL)=f(t)2n=NN(f(t)cneinπtL+f(t)cneinπtL)+m=NNn=NNcn2ei(mn)πtL \begin{align*} 0 &\le \left| f(t)-\sum\limits_{n=-N}^{N}c_{n} e^{i\frac{n\pi t}{L}} \right|^{2} \\ &=\left(f(t)-\sum\limits_{n=-N}^{N}c_{n} e^{i\frac{n\pi t}{L}} \right) \left(\overline{f(t)}-\sum\limits_{n=-N}^{N} \overline{c_{n}} e^{-i\frac{n\pi t}{L}} \right) \\ &= |f(t)|^{2} - \sum \limits_{n=-N}^{N} \left( f(t) \overline{c_{n}} e^{-i\frac{n\pi t}{L}} + \overline{f(t)}c_{n} e^{i\frac{n\pi t}{L}} \right) + \sum \limits_{m=-N}^{N}\sum\limits_{n=-N}^{N} |c_{n}|^{2}e^{i\frac{(m-n)\pi t}{L}} \end{align*}

As can be seen from the first line, the expression is greater than or equal to 00, hence the integrated value is also greater than or equal to 00. Therefore, the following inequality holds.

012LLLf(t)2dtn=NN(cn12LLLf(t)einπtLdt+cn12LLLf(t)einπtLdt)+m=NNn=NNcn212LLLei(mn)πtLdt \begin{align*} 0& \le \dfrac{1}{2L}\int_{-L}^{L} |f(t)|^{2} dt - \sum \limits_{n=-N}^{N} \left(\overline{c_{n}} \dfrac{1}{2L}\int_{-L}^{L}f(t) e^{-i\frac{n\pi t}{L}}dt + c_{n}\dfrac{1}{2L}\int_{-L}^{L} \overline{f(t)} e^{i\frac{n\pi t}{L}}dt \right) \\ &\quad+ \sum \limits_{m=-N}^{N}\sum\limits_{n=-N}^{N} |c_{n}|^{2}\dfrac{1}{2L}\int_{-L}^{L}e^{i\frac{(m-n)\pi t}{L}}dt \end{align*}

Using the definition of complex Fourier coefficients for the second term, and the orthogonality of the exponential function for the third term, it simplifies to the following.

012LLLf(t)2dtn=NN(cˉn12LLLf(t)einπtLdt+cn12LLLfˉ(t)einπtLdt)+m=NNn=NNcn212LLLei(mn)πLtdt=12LLLf(t)2dtn=NN(cˉncn+cncˉn)+m=NNn=NNcn2δmn=12LLLf(t)2dtn=NN2cn2+n=NNcn2=12LLLf(t)2dtn=NNcn2 \begin{align*} 0 &\le \dfrac{1}{2L}\int_{-L}^{L} |f(t)|^{2} dt - \sum \limits_{n=-N}^{N} \left(\bar c_{n} \dfrac{1}{2L}\int_{-L}^{L}f(t) e^{-i\frac{n\pi t}{L}}dt + c_{n}\dfrac{1}{2L}\int_{-L}^{L} \bar f(t)e^{i\frac{n\pi t}{L}}dt \right) + \sum \limits_{m=-N}^{N}\sum\limits_{n=-N}^{N} |c_{n}|^{2}\dfrac{1}{2L}\int_{-L}^{L}e^{i\frac{(m-n)\pi}{L}t}dt \\ &= \dfrac{1}{2L}\int_{-L}^{L} |f(t)|^{2} dt - \sum \limits_{n=-N}^{N} \left(\bar c_{n} c_{n} + c_{n}\bar c_{n} \right) + \sum \limits_{m=-N}^{N}\sum\limits_{n=-N}^{N} |c_{n}|^{2}\delta_{mn} \\ &= \dfrac{1}{2L}\int_{-L}^{L} |f(t)|^{2} dt - \sum \limits_{n=-N}^{N}2 |c_{n}|^{2} + \sum \limits_{n=-N}^{N}|c_{n}|^{2} \\ &= \dfrac{1}{2L}\int_{-L}^{L} |f(t)|^{2} dt - \sum \limits_{n=-N}^{N} |c_{n}|^{2} \end{align*}

Taking the limit of NN \rightarrow \infty and moving the second term on the last expression yields the following.

n=cn212LLLf(t)2dt \sum \limits_{n=-\infty}^{\infty} |c_{n}|^{2} \le \dfrac{1}{2L}\int_{-L}^{L} |f(t)|^{2}dt

According to the relationship between the Fourier coefficients and complex Fourier coefficients, the following equations are obtained.

an2+bn2=anaˉn+bnbˉn=(cn+cn)(cˉn+cˉn)+i(cncn)(i)(cˉncˉn)=2cncˉn+2cncˉn=2(cn2+cn2) \begin{align*} |a_{n}|^{2}+|b_{n}|^{2} &= a_{n} \bar a_{n} + b_{n} \bar b_{n} \\ &= (c_{n}+c_{-n})(\bar c_{n} + \bar c_{-n})+ i (c_{n}-c_{-n})(-i)(\bar c_{n} - \bar c_{-n} ) \\ &= 2c_{n}\bar c_{n} + 2c_{-n}\bar c_{-n} \\ &= 2\left( |c_{n}|^{2} + |c_{-n}|^{2} \right) \end{align*}

    12n=1(an2+bn2)=n=1(cn2+cn2)=n=n0cn2 \implies \dfrac{1}{2} \sum \limits_{n=1}^{\infty} \left( |a_{n}|^{2}+|b_{n}|^{2} \right) = \sum \limits_{n=1}^{\infty} \left ( |c_{n}|^{2} + |c_{-n}|^{2} \right) = \sum \limits_{n=-\infty \\ n\ne 0}^{\infty} | c_n |^{2}

And since c02=14a02|c_{0}|^{2} = \dfrac{1}{4}|a_{0}|^{2},

14a02+12n=1(an2+bn2)=n=cn212LLLf(t)2dt \dfrac{1}{4}|a_0|^{2} +\dfrac{1}{2}\sum\limits_{n=1}^{\infty} \left(|a_n|^{2} + |b_n|^{2} \right) =\sum \limits_{n=-\infty}^{\infty} | c_n |^{2} \le \dfrac{1}{2L}\int_{-L}^{L} | f(t)|^{2} dt