logo

Orthogonal Basis and Its Coordinates 📂Linear Algebra

Orthogonal Basis and Its Coordinates

Definition1

An inner product space basis VV that is an orthogonal set is called an orthogonal basis. If SS is an orthonormal set, it is called an orthonormal basis.

Theorem

If S={v1,v2,,vn}S = \left\{ \mathbf{v}_{1}, \mathbf{v}_{2}, \dots, \mathbf{v}_{n} \right\} is an orthogonal basis of the inner product space VV, and let uV\mathbf{u} \in V. Then, the following equation holds.

u=u,v1v12v1+u,v2v22v2++u,vnvn2vn=i=1nu,vivi2vi \begin{equation} \begin{aligned} \mathbf{u} &= \dfrac{\langle \mathbf{u}, \mathbf{v}_{1} \rangle}{\| \mathbf{v}_{1} \|^{2}} \mathbf{v}_{1} + \dfrac{\langle \mathbf{u}, \mathbf{v}_{2} \rangle}{\| \mathbf{v}_{2} \|^{2}} \mathbf{v}_{2} + \cdots + \dfrac{\langle \mathbf{u}, \mathbf{v}_{n} \rangle}{\| \mathbf{v}_{n} \|^{2}} \mathbf{v}_{n} \\ &= \sum \limits _{i=1}^{n} \dfrac{\langle \mathbf{u}, \mathbf{v}_{i} \rangle}{\| \mathbf{v}_{i} \|^{2}} \mathbf{v}_{i} \end{aligned} \label{thm1} \end{equation}

If SS is an orthonormal basis, the following equation holds.

u=u,v1v1+u,v2v2++u,vnvn=i=1nu,vivi \begin{equation} \begin{aligned} \mathbf{u} &= \langle \mathbf{u}, \mathbf{v}_{1} \rangle\mathbf{v}_{1} + \langle \mathbf{u}, \mathbf{v}_{2} \rangle\mathbf{v}_{2} + \cdots + \langle \mathbf{u}, \mathbf{v}_{n} \rangle\mathbf{v}_{n} \\ &= \sum \limits _{i=1}^{n} \langle \mathbf{u}, \mathbf{v}_{i} \rangle \mathbf{v}_{i} \end{aligned} \label{thm2} \end{equation}

Explanation

From the above theorem, the following vector is said to be the coordinates of uV\mathbf{u} \in V with respect to the basis SS.

(u)S=(u,v1,u,v2,,u,vn) (\mathbf{u})_{S} = \left( \langle \mathbf{u}, \mathbf{v}_{1} \rangle, \langle \mathbf{u}, \mathbf{v}_{2} \rangle, \dots, \langle \mathbf{u}, \mathbf{v}_{n} \rangle \right)

Proof

Since SS is a basis of VV, uV\mathbf{u} \in V has the following unique linear combination representation.

u=c1v1+c2v2++cnvn \begin{equation} \mathbf{u} = c_{1} \mathbf{v}_{1} + c_{2} \mathbf{v}_{2} + \cdots + c_{n} \mathbf{v}_{n} \label{eq1} \end{equation}

Taking the inner product of u\mathbf{u} with each of vi\mathbf{v}_{i} yields the following.

u,vi=c1v1+c2v2++cnvn,vi=c1v1,vi+c2v2,vi+civi,vi++cnvn,vi=civi,vi=civi2 \begin{align*} \\ \langle \mathbf{u}, \mathbf{v}_{i} \rangle &= \langle c_{1} \mathbf{v}_{1} + c_{2} \mathbf{v}_{2} + \cdots + c_{n} \mathbf{v}_{n} , \mathbf{v}_{i} \rangle \\ &= c_{1} \langle \mathbf{v}_{1}, \mathbf{v}_{i} \rangle + c_{2} \langle \mathbf{v}_{2}, \mathbf{v}_{i} \rangle + \cdots c_{i} \langle \mathbf{v}_{i}, \mathbf{v}_{i} \rangle +\cdots + c_{n} \langle \mathbf{v}_{n}, \mathbf{v}_{i} \rangle \\ &= c_{i} \langle \mathbf{v}_{i}, \mathbf{v}_{i} \rangle \\ &= c_{i} \| \mathbf{v}_{i} \|^{2} \end{align*}

    ci=u,vivi2 \\ \implies c_{i} = \dfrac{\langle \mathbf{u}, \mathbf{v}_{i} \rangle }{\| \mathbf{v}_{i} \|^{2}}

Since the cic_{i} that satisfy the above equations are unique, substituting them into (eq1)\eqref{eq1} gives the following.

u=u,v1v12v1+u,v2v22v2++u,vnvn2vn=i=1nu,vivi2vi \begin{align*} \mathbf{u} &= \dfrac{\langle \mathbf{u}, \mathbf{v}_{1} \rangle}{\| \mathbf{v}_{1} \|^{2}} \mathbf{v}_{1} + \dfrac{\langle \mathbf{u}, \mathbf{v}_{2} \rangle}{\| \mathbf{v}_{2} \|^{2}} \mathbf{v}_{2} + \cdots + \dfrac{\langle \mathbf{u}, \mathbf{v}_{n} \rangle}{\| \mathbf{v}_{n} \|^{2}} \mathbf{v}_{n} \\ &= \sum \limits _{i=1}^{n} \dfrac{\langle \mathbf{u}, \mathbf{v}_{i} \rangle}{\| \mathbf{v}_{i} \|^{2}} \mathbf{v}_{i} \end{align*}

If SS is an orthonormal set, then vi2=1\| \mathbf{v}_{i} \|^{2}=1 holds, so (thm2)\eqref{thm2} is satisfied.


  1. Howard Anton, Elementary Linear Algebra: Aplications Version (12th Edition, 2019), p364 ↩︎