logo

Transpose Matrix 📂Matrix Algebra

Transpose Matrix

Definition1

Let’s consider a matrix of size m×nm\times n as AA. The matrix obtained by swapping the rows and columns of AA is called the transpose of AA and is denoted by ATA^{\mathsf{T}} or ATA^{T}, AtA^{t}.

Description

Following the definition, if AA is a m×nm \times n matrix then ATA^{\mathsf{T}} will be a n×mn \times m matrix. Also, the iith row of AA is the same as the iith column of ATA^{\mathsf{T}} and vice versa.

A=[10030822],AT=[10008322] A=\begin{bmatrix} 10 & 0 & 3 \\ 0 & 8 & 22 \end{bmatrix} ,\quad A^{\mathsf{T}} = \begin{bmatrix} 10 & 0 \\ 0 & 8 \\ 3 & 22 \end{bmatrix}

It can be considered as being symmetric with respect to the main diagonal.

Properties

Let’s assume r,sRr,s\in \mathbb{R} and A,BA,B are sizes that make the matrix operations well-defined in each case. Then, the following hold:

(a) Linearity: (rA+sB)T=rAT+sBT\left( rA + sB\right)^{\mathsf{T}}=r A^{\mathsf{T}} + s B^{\mathsf{T}}

(b) The transpose of a product is equal to the product of the transposes in reverse order.

(AB)T=BTAT (AB)^{\mathsf{T}}=B^{\mathsf{T}}A^{\mathsf{T}}

(b’) The transpose of the product of several matrices is equal to the product of the transposes of those matrices in reverse order.

(A1A2An)T=AnTA2TA1T \left( A_{1} A_{2}\cdots A_{n} \right)^{\mathsf{T}} = A_{n}^{\mathsf{T}} \cdots A_{2}^{\mathsf{T}} A_{1}^{\mathsf{T}}

Proof

(b)

For the m×nm\times n matrix AA and the n×kn\times k matrix CC

[(AC)T]km=i=1n[A]mi[C]ik=i=1n[AT]im[CT]ki=i=1n[CT]ki[AT]im=[CTAT]km \begin{align*} \left[ { \left( AC \right) }^{\mathsf{T}}\right] _{ km } &= \sum _{ i=1 }^{ n }{ [A] _{ m i } { [C] } _{ i k } } \\ &= \sum _{ i=1 }^{ n }{ { \left[ { A }^{\mathsf{T}}\right] } _{ i m } { \left[ { C }^{\mathsf{T}}\right] } _{ k i } } \\ &= \sum _{ i=1 }^{ n }{ { \left[ { C }^{\mathsf{T}}\right] } _{ k i }{ \left[ { A }^{\mathsf{T}}\right] } _{ i m } } \\ &= { \left[ { C }^{\mathsf{T}}{ A }^{\mathsf{T}}\right] } _{ km } \end{align*}

Therefore, if each element is the same, then the matrices are equal and thus the following equation holds.

(AC)T=CTAT \left( AC \right) ^{\mathsf{T}}= { C }^{\mathsf{T}}{ A }^{\mathsf{T}}

(b')

This is a corollary to (b).


  1. Jim Hefferon, Linear Algebra(4th Edition). 2020, p138 ↩︎