logo

Gradient, Divergence, Curl, and Laplacian in Curvilinear Coordinates 📂Mathematical Physics

Gradient, Divergence, Curl, and Laplacian in Curvilinear Coordinates

Explanation

In physics, the four operations involving the del operator \nabla, Gradient, Divergence, Curl, Laplacian, are very important. Therefore, one must know the operations in three coordinate systems. Of course, this does not mean that you have to memorize them. Since physics study is not about memorizing formulas, they will naturally be memorized as you study, so do not try to memorize them intentionally but instead keep a printout of the formulas with you, or bookmark this page and pull it up when needed.

Formulas

Let ff be a scalar function, vector functionA\mathbf A be A=A1e^1+A2e^2+A3e^3\mathbf A= A_{1}\mathbf{\hat e_{1}}+A_2\mathbf{\hat e_2}+A_{3}\mathbf{\hat e_{3}}.

  • Gradient:

    f=e^11h1fe1+e^21h2fe2+e^31h3fe3=i=13e^i1hifei \begin{align*} \nabla f &= \mathbf{\hat e_{1}}\frac{1}{h_{1}}\frac{\partial f}{\partial e_{1}}+ \mathbf{\hat e_2}\frac{1}{h_2}\frac{\partial f}{\partial e_2}+\mathbf{\hat e_{3}}\frac{1}{h_{3}}\frac{\partial f}{\partial e_{3}} \\ &= \sum \limits_{i=1}^3 \mathbf{\hat e_{i}}\frac{1}{h_{i}}\frac{\partial f}{\partial e_{i}} \end{align*}

  • Divergence:

    A=1h1h2h3[e1(h2h3A1)+e2(h1h3A2)+e3(h1h2A3)] \nabla \cdot \mathbf A=\frac{1}{h_{1}h_2h_{3}} \left[ \frac{\partial}{\partial e_{1}} (h_2h_{3}A_{1}) + \frac{\partial}{\partial e_2} (h_{1}h_{3}A_2) + \frac{\partial}{\partial e_{3}} (h_{1}h_2A_{3}) \right]

  • Curl:

    ×A=1h1h2h3h1e^1h2e^2h3e^3e1e2e3h1A1h2A2h3A3 \nabla \times \mathbf A =\frac{1}{h_{1}h_2h_{3}} \begin{vmatrix} h_{1} \mathbf{\hat e_{1}} & h_2 \mathbf{\hat e_2} & h_{3} \mathbf{\hat e_{3}} \\[0.5em] \dfrac{\partial}{\partial e_{1}} & \dfrac{\partial }{\partial e_2} & \dfrac{\partial}{\partial e_{3}} \\[1em] h_{1}A_{1} & h_2A_2 & h_{3}A_{3} \end{vmatrix}

  • Laplacian:

    (f)= 2f= 1h1h2h3[e1(h2h3h1fe1)+e2(h1h3h2fe2)+e3(h1h2h3fe3)] \begin{align*} & \nabla \cdot (\nabla f) \\ =&\ \nabla ^2 f \\ =&\ \frac{1}{h_{1}h_2h_{3}} \left[ \frac{\partial }{\partial e_{1}} \left( \frac{h_2h_{3}}{h_{1}} \frac{\partial f}{\partial e_{1}} \right) +\frac{\partial }{\partial e_2} \left( \frac{h_{1}h_{3}}{h_2} \frac{\partial f}{\partial e_2} \right) + \frac{\partial }{\partial e_{3}} \left( \frac{h_{1}h_2}{h_{3}} \frac{\partial f}{\partial e_{3}} \right) \right] \end{align*}

The unit vectors and scale factors for each coordinate system are as follows.

  • Cartesian Coordinates:

    e1^=x^,e2^=y^,e3^=z^,h1=1,h2=1,h3=1 \mathbf{\hat{e_{1}}}=\mathbf{\hat{\mathbf{x}}},\quad\mathbf{\hat{e_{2}}}=\mathbf{\hat{\mathbf{y}}},\quad\mathbf{\hat{e_{3}}}=\mathbf{\hat{\mathbf{z}}},\quad h_{1}=1,\quad h_{2}=1,\quad h_{3}=1

  • Cylindrical Coordinates:

    e1^=ρ^,e2^=ϕ^,e3^=z^,h1=1,h2=ρ,h3=1 \mathbf{\hat{e_{1}}}=\boldsymbol{\hat \rho},\quad\mathbf{\hat{e_{2}}}=\boldsymbol{\hat \phi},\quad\mathbf{\hat{e_{3}}}=\mathbf{\hat{\mathbf{z}}},\quad h_{1}=1,\quad h_{2}=\rho,\quad h_{3}=1

  • Spherical Coordinates

    e1^=r^,e2^=θ^,e3^=ϕ^,h1=1,h2=r,h3=rsinθ \mathbf{\hat{e_{1}}}=\mathbf{\hat r},\quad\mathbf{\hat{e_{2}}}=\boldsymbol{\hat \theta},\quad\mathbf{\hat{e_{3}}}=\boldsymbol{\hat \phi},\quad h_{1}=1,\quad h_{2}=r,\quad h_{3}=r\sin\theta

Cartesian Coordinates

  • Gradient

f=fxx^+fyy^+fzz^ \nabla f = \frac{\partial f}{\partial x}\mathbf{\hat{\mathbf{x}} }+ \frac{\partial f}{\partial y}\mathbf{\hat{\mathbf{y}}} + \frac{\partial f}{\partial z}\mathbf{\hat{\mathbf{z}}}

  • Divergence

A=Axx+Ayy+Azz \nabla \cdot \mathbf A=\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}

  • Curl

×A=(AzyAyz)x^+(AxzAzx)y^+(AyxAxy)z^=x^y^z^xyzAxAyAz \begin{align*} \nabla \times \mathbf A&=\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z} \right) \mathbf{\hat{\mathbf{x}}}+\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x} \right) \mathbf{\hat{\mathbf{y}}}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y} \right) \mathbf{\hat{\mathbf{z}}} \\ &= \begin{vmatrix} \mathbf{\hat{\mathbf{x}}} & \mathbf{\hat{\mathbf{y}}} & \mathbf{\hat{\mathbf{z}}} \\ \dfrac{\partial}{\partial x} & \dfrac{\partial }{\partial y} & \dfrac{\partial}{\partial z} \\ A_{x} & A_{y} & A_{z} \end{vmatrix} \end{align*}

  • Laplacian

(f)=2f=(xx^+yy^+zz^)(fxx^+fyy^+fzz^)=2fx2+2fy2+2fz2 \begin{align*} \nabla \cdot (\nabla f) = \nabla ^2 f &= \left( \frac{\partial}{\partial x}\mathbf{\hat{\mathbf{x}}}+\frac{\partial}{\partial y}\mathbf{\hat{\mathbf{y}}}+\frac{\partial}{\partial z}\mathbf{\hat{\mathbf{z}}} \right) \cdot \left( \frac{\partial f}{\partial x}\mathbf{\hat{\mathbf{x}}}+\frac{\partial f}{\partial y}\mathbf{\hat{\mathbf{y}}}+\frac{\partial f}{\partial z}\mathbf{\hat{\mathbf{z}}} \right) \\ &= \frac{\partial^2 f}{\partial x^2}+\frac{\partial^2 f}{\partial y^2}+\frac{\partial^2 f}{\partial z^2} \end{align*}

Cylindrical Coordinates

  • Gradient

f=fρρ^+1ρfϕϕ^+fzz^ \nabla f = \frac{\partial f}{\partial \rho}\boldsymbol{\hat \rho} + \frac{1}{\rho}\frac{\partial f}{\partial \phi}\boldsymbol{\hat \phi} + \frac{\partial f}{\partial z}\mathbf{\hat{\mathbf{z}}}

  • Divergence

A=1ρ(ρAρ)ρ+1ρAϕϕ+Azz \nabla \cdot \mathbf A=\frac{1}{\rho}\frac{\partial (\rho A_\rho)}{\partial \rho}+\frac{1}{\rho}\frac{\partial A_\phi}{\partial \phi}+\frac{\partial A_{z}}{\partial z}

  • Curl

×A=[1ρAzϕAϕz]ρ^+[AρzAzρ]ϕ^+1ρ[(ρAϕ)ρAρϕ]z^=1ρρ^ρϕ^z^ρϕzAρρAϕAz \begin{align*} \nabla \times \mathbf A&=\left[\frac{1}{\rho}\frac{\partial A_{z}}{\partial \phi}-\frac{\partial A_\phi}{\partial z} \right] \boldsymbol{\hat \rho}+\left[\frac{\partial A_\rho}{\partial z}-\frac{\partial A_{z}}{\partial \rho} \right] \boldsymbol{\hat \phi}+\frac{1}{\rho}\left[\frac{\partial (\rho A_\phi)}{\partial \rho}-\frac{\partial A_\rho}{\partial \phi} \right] \mathrm{\hat{\mathbf{z}}} \\ &= \frac{1}{\rho}\begin{vmatrix} \boldsymbol{\hat \rho} & \rho\boldsymbol{ \hat \phi} & \mathbf{\hat{\mathbf{z}}} \\ \dfrac{\partial}{\partial \rho} & \dfrac{\partial }{\partial \phi} & \dfrac{\partial}{\partial z} \\ A_\rho & \rho A_\phi & A_{z} \end{vmatrix} \end{align*}

  • Laplacian

(f)=2f=1ρρ(ρfρ)+1ρ22fϕ2+2fz2 \nabla \cdot (\nabla f) = \nabla ^2 f = \frac{1}{\rho}\frac{\partial}{\partial \rho}\left( \rho \frac{\partial f}{\partial \rho} \right) + \frac{1}{\rho^2}\frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}

Spherical Coordinates

  • Gradient

f=frr^+1rfθθ^+1rsinθfϕϕ^ \nabla f = \frac{\partial f}{\partial r} \mathbf{\hat{\mathbf{r}}} + \frac{1}{r}\frac{\partial f}{\partial \theta} \boldsymbol{\hat{\boldsymbol{\theta}}} + \frac{1}{r\sin\theta}\frac{\partial f}{\partial \phi}\boldsymbol{\hat \phi}

  • Divergence

A=1r2(r2Ar)r+1rsinθ(sinθAθ)θ+1rsinθAϕϕ \nabla \cdot \mathbf A=\frac{1}{r^2}\frac{\partial (r^2 A_{r})}{\partial r}+\frac{1}{r\sin\theta}\frac{\partial (\sin\theta A_\theta)}{\partial \theta}+\frac{1}{r\sin\theta}\frac{\partial A_\phi}{\partial \phi}

  • Curl

×A=1rsinθ[(sinθAϕ)θAθϕ]r^+1r[1sinθArϕ(rAϕ)r]θ^+1r[(rAθ)rArθ]ϕ^=1r2sinθr^rθ^rsinθϕ^rθϕArrAθrsinθAϕ \begin{align*} \nabla \times \mathbf A &=\frac{1}{r\sin\theta} \left[\frac{\partial (\sin\theta A_\phi)}{\partial \theta}-\frac{\partial A_\theta}{\partial \phi} \right]\mathbf{\hat{\mathbf{r}}}+\frac{1}{r}\left[\frac{1}{\sin\theta} \frac{\partial A_{r}}{\partial \phi}-\frac{\partial (rA_\phi)}{\partial r} \right] \boldsymbol{\hat{\boldsymbol{\theta}}} \\ & \quad+ \frac{1}{r} \left[\frac{\partial (rA_\theta)}{\partial r}-\frac{\partial A_{r}}{\partial \theta} \right]\boldsymbol{\hat \phi} \\ &= \frac{1}{r^2\sin\theta}\begin{vmatrix} \mathbf{\hat{\mathbf{r}}} & r\boldsymbol{\hat{\boldsymbol{\theta}}} & r\sin\theta\boldsymbol{\hat \phi} \\ \dfrac{\partial}{\partial r} & \dfrac{\partial }{\partial \theta} & \dfrac{\partial}{\partial \phi} \\ A_{r} & r A_\theta & r\sin\theta A_\phi \end{vmatrix} \end{align*}

  • Laplacian

(f)=2f=1r2r(r2fr)+1r2sinθθ(sinθfθ)+1r2sin2θ2f2ϕ \nabla \cdot (\nabla f) = \nabla ^2 f = \frac{1}{r^2}\frac{\partial}{\partial r} \left( r^2\frac{\partial f}{\partial r} \right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left( \sin\theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2 f}{\partial^2 \phi}