logo

Homogeneity of Norms 📂Linear Algebra

Homogeneity of Norms

Definition

On a vector space VV, if for two norms α,β\left\| \cdot \right\|_{\alpha}, \left\| \cdot \right\|_{\beta} defined and for any vector vV\mathbf{v} \in V the following cvαvβCvα c \left\| \mathbf{v} \right\|_{\alpha} \le \left\| \mathbf{v} \right\|_{\beta} \le C \left\| \mathbf{v} \right\|_{\alpha} is satisfied with some constant c,C>0c , C >0, the two norms are equivalent.

Theorem

Preservation of inequalities

  • [1]: If norms α\left\| \cdot\right\|_{\alpha} and β\left\| \cdot \right\|_{\beta} defined on vector space VV are equivalent, then for all x,yV\mathbf{x}, \mathbf{y} \in V, the following holds. xαyα    xβyβ \left\| \mathbf{x} \right\|_{\alpha} \le \left\| \mathbf{y} \right\|_{\alpha} \implies \left\| \mathbf{x} \right\|_{\beta} \le \left\| \mathbf{y} \right\|_{\beta}

Equivalence of norms defined in a complex space

  • [2]: All norms defined on the vector space Cn\mathbb{C}^n are equivalent.

Explanation

For two norms to be equivalent means that it is possible to use different norms without issue when dealing with inequalities using norms. Naturally, one can think of utilizing this by converting a hard-to-use norm into an easier one.

Explained in mathematical terms, the equivalence occurs when one norm can be expanded or contracted to be bigger or smaller than the other. This definition can be considered quite intuitive, recalling that the concept of norms comes from length. It would be convenient to think that regardless of the original unit of measurement for length, it can be utilized in comparisons by expanding or contracting it.

Proof

[1]

Given equivalent norms α\left\| \cdot\right\|_{\alpha} and β\left\| \cdot \right\|_{\beta}, let’s say xαyα\left\| \mathbf{x} \right\|_{\alpha} \le \left\| \mathbf{y} \right\|_{\alpha}.

Assuming xβ<yβ\left\| \mathbf{x} \right\|_{\beta} < \left\| \mathbf{y} \right\|_{\beta}, according to the definition of equivalence, there must exist Cy,CxC_{\mathbf{y}} , C_{\mathbf{x}} satisfying the following for all x,yV\mathbf{x}, \mathbf{y} \in V. xαyα=Cyyβ<CyxβCyCxxα \begin{align*} \left\| \mathbf{x} \right\|_{\alpha} \le & \left\| \mathbf{y} \right\|_{\alpha} \\ =& C_{\mathbf{y}} \left\| \mathbf{y} \right\|_{\beta} \\ < & C_{\mathbf{y}} \left\| \mathbf{x} \right\|_{\beta} \\ \le & C_{\mathbf{y}} C_{\mathbf{x}} \left\| \mathbf{x} \right\|_{\alpha} \end{align*} However, if y=0\mathbf{y} = \mathbf{0} then x=0\mathbf{x} = \mathbf{0}, therefore 0=xα<CyCxxα=0 0 = \left\| \mathbf{x} \right\|_{\alpha} < C_{y} C_{x} \left\| \mathbf{x} \right\|_{\alpha} = 0 and there does not exist CyC_{\mathbf{y}}, CxC_{\mathbf{x}} satisfying the above equation, contradicting the premise that α\left\| \cdot\right\|_{\alpha} and β\left\| \cdot \right\|_{\beta} are equivalent. Thus, we obtain the following result. xαyα    xβyβ \left\| \mathbf{x} \right\|_{\alpha} \le \left\| \mathbf{y} \right\|_{\alpha} \implies \left\| \mathbf{x} \right\|_{\beta} \le \left\| \mathbf{y} \right\|_{\beta}

[2]

Strategy: Use the extreme value theorem to show both the existence of cc and CC at once.


For S={z:z2=1}S = \left\{ z : \left\| z \right\|_{2} = 1 \right\}, define the function h:SRh : S \to \mathbb{R} as follows: h(z):=zβzα\displaystyle h(z) := {{ \left\| z \right\|_\beta } \over { \left\| z \right\|_\alpha }}. Since hh is continuous on the compact set SS, by the extreme value theorem, there exists c,Cc, C satisfying ch(z)Cc \le h(z) \le C, thus the following holds.

czαzβCzα c \left\| z \right\|_{\alpha} \le \left\| z \right\|_{\beta} \le C \left\| z \right\|_{\alpha}

Meanwhile, since hh is a function defined by the ratio of norms, h(z)>0h(z) > 0, and its minimum value must also be c>0c>0. Therefore, norms α\left\| \cdot \right\|_{\alpha} and β\left\| \cdot \right\|_{\beta} are equivalent.

The Euclidean space Rn\mathbb{R}^n being a subspace of Cn\mathbb{C}^n, its high utility goes without saying. Moreover, as a more generalized fact, norms defined in a finite-dimensional vector space are all equivalent.