logo

Slow-Fast Systems 📂Dynamics

Slow-Fast Systems

Definition 1

Slow-Fast System

Assuming an element of an open subset WRm+nW \subset \mathbb{R}^{m + n} of the Euclidean space is expressed as (x,y)\left( \mathbf{x}, \mathbf{y} \right). For kNk \in \mathbb{N}, two functions f:W×[0,1]Rm\mathbf{f} : W \times [0,1] \to \mathbb{R}^{m} and g:W×[0,1]Rn\mathbf{g} : W \times [0,1] \to \mathbb{R}^{n}, in addition to t=ξτt = \xi \tau, are given for ξ(0,1)\xi \in (0,1) to satisfy the following CkC^{k} class, dxdτ=f(x,y,ξ)dydτ=ξg(x,y,ξ) \begin{align*} {{ d \mathbf{x} } \over { d \tau }} =& \mathbf{f} \left( \mathbf{x} , \mathbf{y} , \xi \right) \\ {{ d \mathbf{y} } \over { d \tau }} =& \xi \mathbf{g} \left( \mathbf{x} , \mathbf{y} , \xi \right) \end{align*} is called the Fast System, ξdxdt=f(x,y,ξ)dydt=g(x,y,ξ) \begin{align*} \xi {{ d \mathbf{x} } \over { d t }} =& \mathbf{f} \left( \mathbf{x} , \mathbf{y} , \xi \right) \\ {{ d \mathbf{y} } \over { d t }} =& \mathbf{g} \left( \mathbf{x} , \mathbf{y} , \xi \right) \end{align*} is called the Slow System. Such a coupled dynamic system is called a (m,n)(m,n)-Slow-Fast System.

Layer System

The system obtained by applying ξ0\xi \to 0 to the Fast System is called the Layer System. dxdτ=f(x,y,0)dydτ=0 \begin{align*} {{ d \mathbf{x} } \over { d \tau }} =& \mathbf{f} \left( \mathbf{x} , \mathbf{y} , 0 \right) \\ {{ d \mathbf{y} } \over { d \tau }} =& 0 \end{align*}

Reduced System

The system obtained by applying ξ0\xi \to 0 to the Slow System is called the Reduced System. 0=f(x,y,0)dydt=g(x,y,0) \begin{align*} 0 =& \mathbf{f} \left( \mathbf{x} , \mathbf{y} , 0 \right) \\ {{ d \mathbf{y} } \over { d t }} =& \mathbf{g} \left( \mathbf{x} , \mathbf{y} , 0 \right) \end{align*}

Description

As intuitively understood from its definition, the Slow-Fast System is a single system with a clear coupling, yet a dynamic system with two types of temporal flow.


  1. Silva GTd, Martins RM. Dynamics and Stability of Non-Smooth Dynamical Systems with Two Switches. Research Square; 2021. DOI: https://doi.org/10.21203/rs.3.rs-570836/v1↩︎