Spectral Decomposition
📂Matrix Algebra Spectral Decomposition Definition In spectral theory , the statement that A A A is a Hermitian matrix is equivalent to it being unitarily diagonalizable :
A = A ∗ ⟺ A = Q Λ Q ∗
A = A^{\ast} \iff A = Q \Lambda Q^{\ast}
A = A ∗ ⟺ A = Q Λ Q ∗
The term A = Q Λ Q ∗ A = Q \Lambda Q^{\ast} A = Q Λ Q ∗ as mentioned in spectral theory is referred to as Spectral Decomposition , and is expressed as a series of eigenpairs { ( λ k , e k ) } k = 1 n \left\{ \left( \lambda_{k} , e_{k} \right) \right\}_{k=1}^{n} { ( λ k , e k ) } k = 1 n .
A = ∑ k = 1 n λ k e k e k ∗
A = \sum_{k=1}^{n} \lambda_{k} e_{k} e_{k}^{\ast}
A = k = 1 ∑ n λ k e k e k ∗
Description Especially in statistics , covariance matrices are often positive definite matrices , and positive definite matrices are Hermitian matrices . Not just covariance matrices, but also for design matrices X X X , X T X X^{T} X X T X becomes a symmetric matrix , specially if X ∈ R m × n X \in \mathbb{R}^{m \times n} X ∈ R m × n then again becomes a Hermitian matrix . Under such conditions, according to spectral theory, A A A can achieve Q Q Q , composed of orthonormal eigenvectors e 1 , ⋯ , e n e_{1} , \cdots , e_{n} e 1 , ⋯ , e n , which can be rewritten as follows.
A = Q Λ Q ∗ = Q [ λ 1 0 ⋯ 0 0 λ 2 ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ λ n ] [ e 1 ∗ e 2 ∗ ⋮ e n ∗ ] = [ e 1 e 2 ⋯ e n ] [ λ 1 e 1 ∗ λ 2 e 2 ∗ ⋮ λ n e n ∗ ] = λ 1 e 1 e 1 ∗ + λ 2 e 2 e 2 ∗ + ⋯ + λ n e n e n ∗ = ∑ k = 1 n λ k e k e k ∗
\begin{align*}
& A
\\ = & Q \Lambda Q^{\ast}
\\ = & Q \begin{bmatrix}
\lambda_{1} & 0 & \cdots & 0
\\ 0 & \lambda_{2} & \cdots & 0
\\ \vdots & \vdots & \ddots & \vdots
\\ 0 & 0 & \cdots & \lambda_{n}
\end{bmatrix} \begin{bmatrix} e_{1}^{\ast} \\ e_{2}^{\ast} \\ \vdots \\ e_{n}^{\ast} \end{bmatrix}
\\ = & \begin{bmatrix} e_{1} & e_{2} & \cdots & e_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} e_{1}^{\ast} \\ \lambda_{2} e_{2}^{\ast} \\ \vdots \\ \lambda_{n} e_{n}^{\ast} \end{bmatrix}
\\ = & \lambda_{1} e_{1} e_{1}^{\ast} + \lambda_{2} e_{2} e_{2}^{\ast} + \cdots + \lambda_{n} e_{n} e_{n}^{\ast}
\\ = & \sum_{k=1}^{n} \lambda_{k} e_{k} e_{k}^{\ast}
\end{align*}
= = = = = A Q Λ Q ∗ Q λ 1 0 ⋮ 0 0 λ 2 ⋮ 0 ⋯ ⋯ ⋱ ⋯ 0 0 ⋮ λ n e 1 ∗ e 2 ∗ ⋮ e n ∗ [ e 1 e 2 ⋯ e n ] λ 1 e 1 ∗ λ 2 e 2 ∗ ⋮ λ n e n ∗ λ 1 e 1 e 1 ∗ + λ 2 e 2 e 2 ∗ + ⋯ + λ n e n e n ∗ k = 1 ∑ n λ k e k e k ∗