logo

Necessary and Sufficient Conditions for a Quadratic Form to Be Zero 📂Linear Algebra

Necessary and Sufficient Conditions for a Quadratic Form to Be Zero

Theorem

Matrix Form

Let’s say ACn×nA \in \mathbb{C}^{n \times n} represents a matrix and xCn\mathbf{x} \in \mathbb{C}^{n} represents a vector.

The necessary and sufficient condition for the quadratic form xAx\mathbf{x}^{\ast} A \mathbf{x} to be 00 for all xCn\mathbf{x} \in \mathbb{C}^{n} is that AA is a zero matrix: xAx=0,xCn    A=O \mathbf{x}^{*} A \mathbf{x} = 0 , \forall \mathbf{x} \in \mathbb{C}^{n} \iff A = O

Linear Transformation Form

When (V,C)\left( V, \mathbb{C} \right) is considered a finite-dimensional complex inner product space, let’s assume that T:VVT : V \to V represents a linear transformation and vVv \in V represents a vector.

The necessary and sufficient condition for the quadratic form <Tv,v>\left< T v , v \right> to be 00 for all vVv \in V is that TT is a zero transformation T0T_{0}: <Tv,v>=0,vV    T=T0 \left< T v , v \right> = 0 , \forall v \in V \iff T = T_{0}


Proof

Since the proofs for both forms are essentially the same, only the matrix form, which is not in the references, is shown1.

(    )(\implies)

Assume AOA \ne O and use reductio ad absurdum.

The fact that xAx=0\mathbf{x}^{\ast} A \mathbf{x} = 0 holds means that the same result is obtained even when any scalar λC\overline{\lambda} \in \mathbb{C} is multiplied on both sides, which λxAx=0\overline{\lambda} \mathbf{x}^{\ast} A \mathbf{x} = 0. This holding for all x\mathbf{x} means that even when x\mathbf{x} is the corresponding eigenvector to the eigenvalue λ\lambda of AA, it still applies because, when expressed as a matrix inner product, 0=λxAx=(λx)(Ax)=(λx)(λx) \begin{align*} & 0 \\ =& \overline{\lambda} \mathbf{x}^{\ast} A \mathbf{x} \\ =& \left( \lambda \mathbf{x} \right)^{\ast} \left( A \mathbf{x} \right) \\ =& \left( \lambda \mathbf{x} \right) \cdot \left( \lambda \mathbf{x} \right) \end{align*} according to the positive definiteness of the inner product vv=0    v=0\mathbf{v} \cdot \mathbf{v} = \mathbf{0} \iff \mathbf{v} = \mathbf{0} all the eigenvalues of AA must be 00.

Nilpotent matrices and eigenvalues: The condition that all eigenvalues of a square matrix ARn×nA \in \mathbb{R}^{n \times n} are 00 is equivalent to AA being a nilpotent matrix.

In other words, AA is a nilpotent matrix. Meanwhile, if AOA \ne O, there must be at least one vector xCn\mathbf{x} \in \mathbb{C}^{n} that satisfies y=Ax\mathbf{y} = A \mathbf{x} for some non-zero y0\mathbf{y} \ne 0. Having already shown that AA is a nilpotent matrix, without loss of generality, let’s say 0=(x+y)A(x+y)0=zAz,zCn=(x+y)(Ax+Ay)=(x+y)(y+0)=(x+y)y=xy+yy=xAx+yyy=Ax    xy=xAx=0+yy \begin{align*} & 0 \\ =& \left( \mathbf{x} + \mathbf{y} \right)^{\ast} A \left( \mathbf{x} + \mathbf{y} \right) & \because 0 = \mathbf{z}^{\ast} A \mathbf{z}, \forall \mathbf{z} \in \mathbb{C}^{n} \\ =& \left( \mathbf{x} + \mathbf{y} \right)^{\ast} \left( A \mathbf{x} + A \mathbf{y} \right) \\ =& \left( \mathbf{x} + \mathbf{y} \right)^{\ast} \left( \mathbf{y} + \mathbf{0} \right) \\ =& \left( \mathbf{x}^{\ast} + \mathbf{y}^{\ast} \right) \mathbf{y} \\ =& \mathbf{x}^{\ast} \mathbf{y} + \mathbf{y}^{\ast} \mathbf{y} \\ =& \mathbf{x}^{\ast} A \mathbf{x} + \mathbf{y}^{\ast} \mathbf{y} & \because \mathbf{y} = A \mathbf{x} \implies \mathbf{x}^{\ast} \mathbf{y} = \mathbf{x}^{\ast} A \mathbf{x} \\ =& 0 + \mathbf{y}^{\ast} \mathbf{y} \end{align*} That means yy=0\mathbf{y} \cdot \mathbf{y} = 0, but once again, according to the positive definiteness, it must be y=0\mathbf{y} = 0, which is a contradiction to the definition of y0\mathbf{y} \ne 0 as y\mathbf{y}. Consequently, we arrive at A=OA = O.

(    )(\impliedby)

It’s self-evident.