Differential Rings in Abstract Algebra
📂Abstract AlgebraDifferential Rings in Abstract Algebra
Definition
Differential Ring
Let R be an (Abelian) ring. A function d:R→R that satisfies the following is called an (algebraic) derivation.
d(x+y)=d(xy)=d(x)+d(y)d(x)y+xd(y)
The ordered pair (R,d) is called a Differential Ring.
===
定義
微分環
Rを(アーベル) 環とする。次を満たす関数 d:R→R を (代数的)微分という。
d(x+y)=d(xy)=d(x)+d(y)d(x)y+xd(y)
順序対 (R,d) を微分環と呼ぶ。
Description
Differential Algebra is interested in whether the properties still abstract when we give a ring the function known as differentiation, and what the conditions are. Naturally, the easiest and most familiar example would be the real number R polynomial ring R[x], and in this case, the differentiation d
d:xn↦nxn−1
defined formally, (R[x],d) becomes the differential ring we learned even in high school literature classes. The constant ring of this differential ring is R.
In the definition, especially d(xy)=d(x)y+xd(y) serves as an important condition that makes ‘differentiation’ differential in this abstraction, and it is also called Leibniz Product after the name of Leibniz, who invented calculus.
===
説明
微分代数は、環に我々が知っている微分という関数を与えた時も、その性質が抽象化されるか、その条件は何かに関心を持つ。もちろん、最も簡単で我々に馴染みのある例は、実数 R 多項式の環 R[x] であり、この場合の微分 d が
d:xn↦nxn−1
と形式的に定義されれば、(R[x],d) は高校の文科でも学んだことのある微分環になる。この微分環の定数環はR である。
定義で特に d(xy)=d(x)y+xd(y) はこのような抽象化で「微分」を微分たらしめる重要な条件として機能し、微分積分学を創造したライプニッツの名前にちなんで ライプニッツ積とも呼ばれる。
Theorem
Constant Differentiation
- [1]: For the additive identity 0 of R and the elements c and r∈R of the constant ring, the following holds.
d(0)=d(1)=d(cr)=0d(c)=0cd(r)
High-order Term Differentiation
- [2] For n∈N and r∈R, the following holds.
d(rn)=nrn−1d(r)
Quotient Differentiation
- [3] For the unit u of R and r∈R, the following holds.
d(ru−1)=[d(r)u−rd(u)]u−2
Proof
[1]
d(0)=0 is obtained as follows.
⟹⟹d(0)=d(0+0)=d(0)+d(0)d(0)=d(0)+d(0)0=d(0)
d(1)=0 is obtained as follows.
d(1)===⟹d(1)=d(1⋅1)d(1)1+1d(1)d(1)+d(1)0
Meanwhile, according to the definition, the constant c is thus d(c)=0 is d(1)=d(c).
d(cr)=cd(r) is obtained as follows.
d(cr)===d(c⋅r)d(c)r+cd(r)0+cd(r)
■
[2]
Proved by mathematical induction. When n=1,
d(r)=d(r⋅1)=d(r)1+rd(1)=d(r)=1⋅r1−1d(r)
and if the given theorem holds, then
d(rk)=====d(r⋅rk−1)d(r)rk−1+rd(rk−1)d(r)rk−1+r(k−1)rk−2d(r)d(r)rk−1+(k−1)rk−1d(r)krk−1d(r)
thus the given theorem holds for all n∈N.
■
[3]
That u is a unit means there exists an inverse for its multiplication u−1∈R. If we set 1=uu−1 then
d(1)==⟹0=⟹ud(u−1)=⟹d(u−1)=d(uu−1)d(u)u−1+ud(u−1)d(u)u−1+ud(u−1)d(u)u−1d(u)u−2
thus d(u−1)=d(u)u−2, and we obtain the following.
d(ru−1)===d(r)u−1+rd(u−1)d(r)uu−1u−1+rd(u)u−2[d(r)u−rd(u)]u−2
■