logo

Differential Rings in Abstract Algebra 📂Abstract Algebra

Differential Rings in Abstract Algebra

Definition

Differential Ring 1

Let RR be an (Abelian) ring. A function d:RRd: R \to R that satisfies the following is called an (algebraic) derivation. d(x+y)=d(x)+d(y)d(xy)=d(x)y+xd(y) \begin{align*} d \left( x + y \right) =& d (x) + d(y) \\ d \left( x y \right) =& d (x) y + x d(y) \end{align*} The ordered pair (R,d)\left( R, d \right) is called a Differential Ring.

===

定義

微分環 1

RR(アーベル) 環とする。次を満たす関数 d:RRd: R \to R(代数的)微分という。 d(x+y)=d(x)+d(y)d(xy)=d(x)y+xd(y) \begin{align*} d \left( x + y \right) =& d (x) + d(y) \\ d \left( x y \right) =& d (x) y + x d(y) \end{align*} 順序対 (R,d)\left( R, d \right)微分環と呼ぶ。

Description

Differential Algebra is interested in whether the properties still abstract when we give a ring the function known as differentiation, and what the conditions are. Naturally, the easiest and most familiar example would be the real number R\mathbb{R} polynomial ring R[x]\mathbb{R} [x], and in this case, the differentiation dd d:xnnxn1 d : x^{n} \mapsto n x^{n-1} defined formally, (R[x],d)\left( \mathbb{R}[x] , d \right) becomes the differential ring we learned even in high school literature classes. The constant ring of this differential ring is R\mathbb{R}.

In the definition, especially d(xy)=d(x)y+xd(y)d \left( x y \right) = d (x) y + x d(y) serves as an important condition that makes ‘differentiation’ differential in this abstraction, and it is also called Leibniz Product after the name of Leibniz, who invented calculus.

===

説明

微分代数は、に我々が知っている微分という関数を与えた時も、その性質が抽象化されるか、その条件は何かに関心を持つ。もちろん、最も簡単で我々に馴染みのある例は、実数 R\mathbb{R} 多項式の環 R[x]\mathbb{R} [x] であり、この場合の微分 ddd:xnnxn1 d : x^{n} \mapsto n x^{n-1} と形式的に定義されれば、(R[x],d)\left( \mathbb{R}[x] , d \right) は高校の文科でも学んだことのある微分環になる。この微分環の定数環はR\mathbb{R} である。

定義で特に d(xy)=d(x)y+xd(y)d \left( x y \right) = d (x) y + x d(y) はこのような抽象化で「微分」を微分たらしめる重要な条件として機能し、微分積分学を創造したライプニッツの名前にちなんで ライプニッツ積とも呼ばれる。

Theorem

Constant Differentiation

  • [1]: For the additive identity 00 of RR and the elements cc and rRr \in R of the constant ring, the following holds. d(0)=0d(1)=d(c)=0d(cr)=cd(r) \begin{align*} d \left( 0 \right) =& 0 \\ d \left( 1 \right) =& d (c) = 0 \\ d \left( c r \right) =& c d \left( r \right) \end{align*}

High-order Term Differentiation

  • [2] For nNn \in \mathbb{N} and rRr \in R, the following holds. d(rn)=nrn1d(r) d \left( r^{n} \right) = n r^{n-1} d (r)

Quotient Differentiation

  • [3] For the unit uu of RR and rRr \in R, the following holds. d(ru1)=[d(r)urd(u)]u2 d \left( r u^{-1} \right) = \left[ d (r) u - r d (u) \right] u^{-2}

Proof

[1]

d(0)=0d \left( 0 \right) = 0 is obtained as follows. d(0)=d(0+0)=d(0)+d(0)    d(0)=d(0)+d(0)    0=d(0) \begin{align*} & d (0) = d \left( 0 + 0 \right) = d \left( 0 \right) + d \left( 0 \right) \\ \implies & d (0) = d (0) + d (0) \\ \implies & 0 = d (0) \end{align*}

d(1)=0d \left( 1 \right) = 0 is obtained as follows. d(1)=d(11)=d(1)1+1d(1)=d(1)+d(1)    d(1)=0 \begin{align*} d (1) =& d \left( 1 \cdot 1 \right) \\ =& d \left( 1 \right) 1 + 1 d \left( 1 \right) \\ =& d \left( 1 \right) + d \left( 1 \right) \\ \implies d(1) = & 0 \end{align*} Meanwhile, according to the definition, the constant cc is thus d(c)=0d(c) = 0 is d(1)=d(c)d(1) = d(c).

d(cr)=cd(r)d \left( c r \right) = c d (r) is obtained as follows. d(cr)=d(cr)=d(c)r+cd(r)=0+cd(r) \begin{align*} d (cr) =& d \left( c \cdot r \right) \\ =& d \left( c \right) r + c d \left( r \right) \\ =& 0 + c d \left( r \right) \end{align*}

[2]

Proved by mathematical induction. When n=1n = 1,
d(r)=d(r1)=d(r)1+rd(1)=d(r)=1r11d(r) d (r) = d ( r \cdot 1 ) = d(r) 1 + r d(1) = d(r) = 1 \cdot r^{1-1} d(r) and if the given theorem holds, then d(rk)=d(rrk1)=d(r)rk1+rd(rk1)=d(r)rk1+r(k1)rk2d(r)=d(r)rk1+(k1)rk1d(r)=krk1d(r) \begin{align*} d \left( r^{k} \right) =& d \left( r \cdot r^{k-1} \right) \\ =& d \left( r \right) r^{k-1} + r d \left( r^{k-1} \right) \\ =& d \left( r \right) r^{k-1} + r (k-1) r^{k-2} d \left( r \right) \\ =& d \left( r \right) r^{k-1} + (k-1) r^{k-1} d \left( r \right) \\ =& k r^{k-1} d \left( r \right) \end{align*} thus the given theorem holds for all nNn \in \mathbb{N}.

[3]

That uu is a unit means there exists an inverse for its multiplication u1Ru^{-1} \in R. If we set 1=uu11 = u u^{-1} then d(1)=d(uu1)=d(u)u1+ud(u1)    0=d(u)u1+ud(u1)    ud(u1)=d(u)u1    d(u1)=d(u)u2 \begin{align*} d \left( 1 \right) =& d \left( u u^{-1} \right) \\ =& d \left( u \right) u^{-1} + u d \left( u^{-1} \right) \\ \implies 0 =& d \left( u \right) u^{-1} + u d \left( u^{-1} \right) \\ \implies u d \left( u^{-1} \right) =& d \left( u \right) u^{-1} \\ \implies d \left( u^{-1} \right) =& d \left( u \right) u^{-2} \end{align*} thus d(u1)=d(u)u2d \left( u^{-1} \right) = d \left( u \right) u^{-2}, and we obtain the following. d(ru1)=d(r)u1+rd(u1)=d(r)uu1u1+rd(u)u2=[d(r)urd(u)]u2 \begin{align*} d \left( r u^{-1} \right) =& d \left( r \right) u^{-1} + r d \left( u^{-1} \right) \\ =& d \left( r \right) u u^{-1} u^{-1} + r d \left( u \right) u^{-2} \\ =& \left[ d (r) u - r d (u) \right] u^{-2} \end{align*}


  1. Dale. (2016). NOTES ON DIFFERENTIAL ALGEBRA: https://math.berkeley.edu/~reiddale/differential_algebra_notes.pdf p2. ↩︎ ↩︎