logo

Holder Inequality 📂Linear Algebra

Holder Inequality

Definition

1p+1q=1\dfrac{1}{p} + \dfrac{1}{q} = 1 satisfies and for two constants p,qp, q and u,vCn\mathbf{u}, \mathbf{v} \in \mathbb{C}^n larger than 1, the following inequality holds:

u,v=uvupvq | \left\langle \mathbf{u}, \mathbf{v} \right\rangle | = |\mathbf{u} ^{\ast} \mathbf{v}| \le ||\mathbf{u}||_{p} ||\mathbf{v}||_{q}

This is called the Hölder’s inequality.

Explanation

Although it should be written as Hölder’s inequality, it was transliterated due to the umlaut. It’s a marvelous inequality where the pp-norm and the qq-norm are mixed together. It’s not particularly significant in terms of usage or proof methods, but when p=q=2p=q=2, it becomes the Cauchy-Schwarz inequality.

Proof

Consider the case where neither is 0\mathbb{0} as it is trivial if u=0\mathbf{u} = \mathbb{0} or v=0\mathbf{v} = \mathbb{0}.

Young’s inequality

Satisfies 1p+1q=1\dfrac{1}{p} + \dfrac{1}{q} = 1 and for two constants greater than 1, p,qp,q and two positive numbers a,ba,b:

abapp+bqq ab \le { {a^{p}} \over {p} } + {{b^{q}} \over {q}}

By substituting a=uiup,b=vivqa = \dfrac{ | u_{i} | }{|| \mathbf{u}||_{p} }, b = \dfrac{ | v_{i} | }{|| \mathbf{v} || _{q} } into Young’s inequality, we get the following inequality:

uiviupvq1puipupp+1qviqvqq {{| u_{i} v_{i} |} \over {||\mathbf{u}||_{p} ||\mathbf{v}||_{q} }} \le {{1} \over {p}} {{ |u_{i}|^{p} } \over {|| \mathbf{u}||_{p}^{p} }} + {{1} \over {q}} {{ |v_{i}|^q } \over {|| \mathbf{v}||_{q}^{q} }}

Taking i=1n\displaystyle \sum_{i = 1}^{n} of both sides of the equation gives:

i=1nuiviupvqi=1n(1puipupp+1qviqvqq)    i=1nuiviupvq1pi=1nuipupp+1qi=1nviqvqq    u,vupvq1puppupp+1qvqqvqq=1p+1q=1 \begin{align*} & \sum_{i=1}^{n} \dfrac{| u_{i} v_{i} |}{||\mathbf{u}||_{p} ||\mathbf{v}||_{q} } \le & \sum_{i = 1}^{n} \left( \dfrac{1}{p} \dfrac{ |u_{i}|^{p} }{|| \mathbf{u}||_{p}^{p} } + \dfrac{1}{q} \dfrac{ |v_{i}|^q }{|| \mathbf{v}||_{q}^{q} } \right) \\ \implies && \dfrac{ \sum_{i=1}^{n} | u_{i} v_{i} |}{||\mathbf{u}||_{p} ||\mathbf{v}||_{q} } \le & \dfrac{1}{p} \dfrac{ \sum_{i=1}^{n}|u_{i}|^{p} }{|| \mathbf{u}||_{p}^{p} } + \dfrac{1}{q} \dfrac{ \sum_{i=1}^{n}|v_{i}|^q }{|| \mathbf{v}||_{q}^{q} } \\ \implies && \dfrac{ |\left\langle \mathbf{u}, \mathbf{v} \right\rangle | }{||\mathbf{u}||_{p} ||\mathbf{v}||_{q} } \le & \dfrac{1}{p} \dfrac{ || \mathbf{u}||_{p}^{p} }{|| \mathbf{u}||_{p}^{p} } + \dfrac{1}{q} \dfrac{ || \mathbf{v}||_{q}^{q} }{|| \mathbf{v}||_{q}^{q} } = \dfrac{1}{p} + \dfrac{1}{q} = 1 \end{align*}

The third line follows from the definition of the pp-norm (i=1nuip)1/p=up\left( \sum_{i=1}^{n}|u_{i}|^{p} \right)^{1/p} = \left\| \mathbf{u} \right\|_{p}. Multiplying both sides by upvq||\mathbf{u}||_{p} ||\mathbf{v}||_{q} gives:

u,vupvq | \left\langle \mathbf{u}, \mathbf{v} \right\rangle | \le ||\mathbf{u}||_{p} ||\mathbf{v}||_{q}

See Also