logo

Bingham-Mardia Distribution 📂Probability Distribution

Bingham-Mardia Distribution

Definition 1

The Bingham-Mardia Distribution is a multivariate distribution BMp(μ,κ,ν)\text{BM}_{p} \left( \mu , \kappa, \nu \right) that has a probability density function for Unique Mode μSp1\mu \in S^{p-1}, Concentration κ>0\kappa > 0, and radius ν>0\nu > 0 as follows. f(x)=1α(κ,ν)exp(κ(μTxν)2),xSp1 f \left( \mathbf{x} \right) = {{ 1 } \over { \alpha \left( \kappa , \nu \right) }} \exp \left( - \kappa \left( \mu^{T} \mathbf{x} - \nu \right)^{2} \right) \qquad , \mathbf{x} \in S^{p-1} Here, α(κ,ν)>0\alpha \left( \kappa , \nu \right) > 0 is the normalizing constant that makes Sp1f(x)dx=1\int_{S^{p-1}} f(\mathbf{x}) d \mathbf{x} = 1.


Explanation

The Bingham-Mardia distribution is a probability distribution that forms clusters in the shape of Small Circles on the sphere.

von Mises-Fisher distribution’s probability density function: f(x)=(κ2)p/211γ(p/2)Ip/21(κ)exp(κμTx),xSp1 f \left( \mathbf{x} \right) = \left( {{ \kappa } \over { 2 }} \right)^{p/2-1} {{ 1 } \over { \gamma \left( p/2 \right) I_{p/2-1} \left( \kappa \right) }} \exp \left( \kappa \mu^{T} \mathbf{x} \right) \qquad , \mathbf{x} \in S^{p-1}

When compared to the von Mises-Fisher distribution, which felt like a normal distribution on the sphere, it will be easily understood that in the probability density function of the Bingham-Mardia distribution, κ(μTxν)2\kappa \left( \mu^{T} \mathbf{x} - \nu \right)^{2} plays a role in forming the circle shape.


  1. Kim. (2019). Small sphere distributions for directional data with application to medical imaging. https://doi.org/10.1111/sjos.12381 ↩︎